复数
- Euler公式: e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0
- 复数的计算
加减:
乘除:模乘除 角加减
幂: z n = r n ( c o s n θ + i s i n n θ ) z^n=r^n(cosn\theta+isinn\theta) zn=rn(cosnθ+isinnθ)
开方: z 1 n = r 1 n ( c o s θ + 2 k π n + i s i n θ + 2 k π n ) , k = 0 , 1 , ⋯ , n − 1 z^{\frac{1}{n}}=r^{\frac{1}{n}}(cos\frac{\theta+2k\pi}{n}+isin\frac{\theta+2k\pi}{n}), k=0,1,\cdots,n-1 zn1=rn1(cosnθ+2kπ+isinnθ+2kπ),k=0,1,⋯,n−1
复变函数
f ( z ) = u ( x , y ) + i v ( x , y ) , ( z = x + i y ) f(z)=u(x,y)+iv(x,y), (z=x+iy) f(z)=u(x,y)+iv(x,y),(z=x+iy)
- 极限:在某点u,v均存在极限,则 f ( z ) f(z) f(z)在该点极限存在
- 连续
- 解析\可导:
f
(
z
)
f(z)
f(z)在
z
0
z_0
z0解析
⇔
\Leftrightarrow
⇔
f
(
z
)
f(z)
f(z)在
z
0
z_0
z0附近可导
可导的充要条件:
C-R方程 (证明 导数的定义)
初等函数
反对幂指三
指数函数:
- e x p ( z ) = e x ( c o s y + i s i n y ) exp(z)=e^x(cosy+isiny) exp(z)=ex(cosy+isiny)通过C-R方程得到该函数解析
- f ′ ( z ) = f ( z ) f'(z)=f(z) f′(z)=f(z)
- y = 0 y=0 y=0时, I m Z = 0 ImZ=0 ImZ=0, e x p ( z ) = e x exp(z)=e^x exp(z)=ex
- f ( z ) f(z) f(z)为周期函数 f ( z ) = e z = f ( z + 2 k π i ) f(z)=e^z=f(z+2k\pi i) f(z)=ez=f(z+2kπi)