复分析(一)

复数

  1. Euler公式: e i π + 1 = 0 e^{i\pi}+1=0 eiπ+1=0
  2. 复数的计算
    加减:
    乘除:模乘除 角加减
    幂: z n = r n ( c o s n θ + i s i n n θ ) z^n=r^n(cosn\theta+isinn\theta) zn=rn(cosnθ+isinnθ)
    开方: z 1 n = r 1 n ( c o s θ + 2 k π n + i s i n θ + 2 k π n ) , k = 0 , 1 , ⋯   , n − 1 z^{\frac{1}{n}}=r^{\frac{1}{n}}(cos\frac{\theta+2k\pi}{n}+isin\frac{\theta+2k\pi}{n}), k=0,1,\cdots,n-1 zn1=rn1(cosnθ+2kπ+isinnθ+2kπ),k=0,1,,n1

复变函数

f ( z ) = u ( x , y ) + i v ( x , y ) , ( z = x + i y ) f(z)=u(x,y)+iv(x,y), (z=x+iy) f(z)=u(x,y)+iv(x,y),(z=x+iy)

  1. 极限:在某点u,v均存在极限,则 f ( z ) f(z) f(z)在该点极限存在
  2. 连续
  3. 解析\可导: f ( z ) f(z) f(z) z 0 z_0 z0解析 ⇔ \Leftrightarrow f ( z ) f(z) f(z) z 0 z_0 z0附近可导
    可导的充要条件:
    C-R方程 (证明 导数的定义)

初等函数

反对幂指三

指数函数:

  1. e x p ( z ) = e x ( c o s y + i s i n y ) exp(z)=e^x(cosy+isiny) exp(z)=ex(cosy+isiny)通过C-R方程得到该函数解析
  2. f ′ ( z ) = f ( z ) f'(z)=f(z) f(z)=f(z)
  3. y = 0 y=0 y=0时, I m Z = 0 ImZ=0 ImZ=0 e x p ( z ) = e x exp(z)=e^x exp(z)=ex
  4. f ( z ) f(z) f(z)为周期函数 f ( z ) = e z = f ( z + 2 k π i ) f(z)=e^z=f(z+2k\pi i) f(z)=ez=f(z+2kπi)

对数函数

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值