公共基础考试题目

这是一份涵盖分析、代数和几何拓扑的数学试卷,包括求解复变函数性质、群论问题、环与同态、拓扑空间性质及曲率计算等核心概念。
摘要由CSDN通过智能技术生成

试卷一

分析

一、求
请添加图片描述

二、设复变函数 f ( z ) f(z) f(z)为整函数,且存在正整数 n n n以及常数 R > 0 , M > 0 R>0,M>0 R>0,M>0,使得当 ∣ z ∣ > R |z|>R z>R时,有 ∣ f ( z ) ∣ ≤ M ∣ z ∣ n |f(z)|\leq M|z|^n f(z)Mzn.试证明: f ( z ) f(z) f(z)是一个至多 n n n次的多项式或一常数.
三、陈述Lebesgue控制收敛定理并证明
请添加图片描述
四、陈述开映射定理并证明:设 ∥ ⋅ ∥ 1 \|\cdot\|_1 1 ∥ ⋅ ∥ 2 \|\cdot\|_2 2是线性空间 X X X上的两种范数,且使得 ( X , ∥ ⋅ ∥ 1 ) (X,\|\cdot\|_1) (X,1) ( X , ∥ ⋅ ∥ 2 ) (X,\|\cdot\|_2) (X,2)都是完备的.若存在常数 a > 0 a>0 a>0使得对任意 x ∈ X x\in X xX,有 ∥ x ∥ 2 ≤ a ∥ x ∥ 1 \|x\|_2\leq a\|x\|_1 x2ax1,则一定存在常数 b > 0 b>0 b>0,使得对任意 x ∈ X x\in X xX,有 ∥ x ∥ 1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值