试卷一
分析
一、求
二、设复变函数 f ( z ) f(z) f(z)为整函数,且存在正整数 n n n以及常数 R > 0 , M > 0 R>0,M>0 R>0,M>0,使得当 ∣ z ∣ > R |z|>R ∣z∣>R时,有 ∣ f ( z ) ∣ ≤ M ∣ z ∣ n |f(z)|\leq M|z|^n ∣f(z)∣≤M∣z∣n.试证明: f ( z ) f(z) f(z)是一个至多 n n n次的多项式或一常数.
三、陈述Lebesgue控制收敛定理并证明
四、陈述开映射定理并证明:设 ∥ ⋅ ∥ 1 \|\cdot\|_1 ∥⋅∥1和 ∥ ⋅ ∥ 2 \|\cdot\|_2 ∥⋅∥2是线性空间 X X X上的两种范数,且使得 ( X , ∥ ⋅ ∥ 1 ) (X,\|\cdot\|_1) (X,∥⋅∥1)和 ( X , ∥ ⋅ ∥ 2 ) (X,\|\cdot\|_2) (X,∥⋅∥2)都是完备的.若存在常数 a > 0 a>0 a>0使得对任意 x ∈ X x\in X x∈X,有 ∥ x ∥ 2 ≤ a ∥ x ∥ 1 \|x\|_2\leq a\|x\|_1 ∥x∥2≤a∥x∥1,则一定存在常数 b > 0 b>0 b>0,使得对任意 x ∈ X x\in X x∈X,有 ∥ x ∥ 1