Deepfake idea

Motivation

  • 考虑语义信息,在弱监督信息中尽可能挖掘有效信息;
  • 一种更贴近实际的实验设定;
  • 在更为精确的数据集上时(标注成本较高,比如为CUB200种鸟类标注,需要很高的专业知识水平,此时应用CLL),反标记监督信息更为有用:
    e.g. 鸟类识别任务:给定一张鸟类图片:1.被告知不是汽车,2.被告知不是麻雀。显然2的信息更有用,更符合CLL问题初衷。

其他

  1. 自监督学习:根据置信度设置伪标签,提供监督信息
  2. 对比学习:反标签 → \rightarrow 负样本

Semantic information

  • related work:
  1. 模糊度
    在这里插入图片描述
    Progressive Identification of True Labels for Partial-Label Learning
  • 零样本学习
    语义信息作为类原型,寻找合适映射
  1. 插入属性空间S
    在这里插入图片描述
  • An embarrassingly simple approach to zero-shot learning*
  1. SAE(semantic automatic encoder)
    在这里插入图片描述

  2. 【!】DeViSe
    在这里插入图片描述

在这里插入图片描述
(感觉可以尝试!将hinge rank loss 反过来排序)

Data

  1. original setting
    除去真实标签,等概率抽取反标签
  2. new setting(先搁置,首先根据其他文献的original setting得到的数据集做,便于比较、有说服力)
    除去真实标签,考虑语义距离地抽取反标签

Loss functions

  • Idea
  1. l o s s = l o s s C L L + λ 1 D i s t ( f ( x ) , y ˉ ) + 1 , where D i s t ( f ( x ) , y ˉ ) ∈ [ 0 , 1 ] loss = loss_{CLL}+ \lambda \frac{1}{Dist(f(x), \bar{y})+1},\quad \text{where} \quad Dist(f(x), \bar{y})\in [0,1] loss=lossCLL+λDist(f(x),yˉ)+11,whereDist(f(x),yˉ)[0,1]
    λ \lambda λ选取:
    a) 常量,通过试验确定
    b) 变量
    c) 分段函数,引入阈值 α \alpha α
    λ = { λ , D i s t ( f ( x ) , y ˉ ) ≤ α , 0 , Otherwise . \lambda=\{ \begin{aligned} \lambda& , & Dist(f(x), \bar{y}) \leq \alpha, \\ 0& , & \text{Otherwise}. \end{aligned} λ={λ0,,Dist(f(x),yˉ)α,Otherwise.
    (当预测类别标签 f ( x ) f(x) f(x)与给定反标签 y ˉ \bar{y} yˉ距离很小时应该比较敏感)
    (MCLL : m i n y i ∈ Y ˉ D i s t ( f ( x ) , y ˉ i ) ≤ α min_{y_i\in\bar{Y}}Dist(f(x), \bar{y}_i) \leq \alpha minyiYˉDist(f(x),yˉi)α)
  2. l o s s = ∑ i = 1 l 1 D i s t ( f ( x ) , y ˉ ) + 1 l o s s C L L ( f ( x i ) , y ˉ i ) loss = \sum^{l}_{i=1} \frac{1}{Dist(f(x), \bar{y})+1} loss_{CLL}(f(x_i), \bar{y}_i) loss=i=1lDist(f(x),yˉ)+11lossCLL(f(xi),yˉi)
    将距离函数作为一个置信度,预测标签与反标签距离越小置信度越低
  3. 放弃以上损失框架(或者也是加和),hinge rank loss中将向量相似度换为距离函数?
    在这里插入图片描述
  • Related work
  1. 非对称结构 (PLL): l o s s = l o s s 补标签集 + β l o s s 反标签集 loss = loss_{\text{补标签集}}+\beta loss_{\text{反标签集}} loss=loss补标签集+βloss反标签集
    系数 β \beta β选取:离散 → \rightarrow 连续(PLL)
    在这里插入图片描述
    “Leveraged Weighted Loss for Partial Label Learning”
  • 类似的 (CLL): l o s s = l o s s 反标签集 + β ∑ 数 据 增 强 样 本 集 l o s s 补标签集 loss = loss_{\text{反标签集}}+\beta \sum_{数据增强样本集} loss_{\text{补标签集}} loss=loss反标签集+βloss补标签集
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    系数 β \beta β通过实验一开始要小后面要大 → \rightarrow 动态递增变化(0到1)
    Partial-Output Consistency Regularization

Model

  • 普通CNN模型
  • GAN
    目前只有一篇代码可用 TAC-GAN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值