Deepfake idea
Motivation
- 考虑语义信息,在弱监督信息中尽可能挖掘有效信息;
- 一种更贴近实际的实验设定;
- 在更为精确的数据集上时(标注成本较高,比如为CUB200种鸟类标注,需要很高的专业知识水平,此时应用CLL),反标记监督信息更为有用:
e.g. 鸟类识别任务:给定一张鸟类图片:1.被告知不是汽车,2.被告知不是麻雀。显然2的信息更有用,更符合CLL问题初衷。
其他
- 自监督学习:根据置信度设置伪标签,提供监督信息
- 对比学习:反标签 → \rightarrow →负样本
Semantic information
- related work:
- 模糊度
Progressive Identification of True Labels for Partial-Label Learning
- 零样本学习
语义信息作为类原型,寻找合适映射
- 插入属性空间S
- An embarrassingly simple approach to zero-shot learning*
-
SAE(semantic automatic encoder)
-
【!】DeViSe
(感觉可以尝试!将hinge rank loss 反过来排序)
Data
- original setting
除去真实标签,等概率抽取反标签 - new setting(先搁置,首先根据其他文献的original setting得到的数据集做,便于比较、有说服力)
除去真实标签,考虑语义距离地抽取反标签
Loss functions
- Idea
-
l
o
s
s
=
l
o
s
s
C
L
L
+
λ
1
D
i
s
t
(
f
(
x
)
,
y
ˉ
)
+
1
,
where
D
i
s
t
(
f
(
x
)
,
y
ˉ
)
∈
[
0
,
1
]
loss = loss_{CLL}+ \lambda \frac{1}{Dist(f(x), \bar{y})+1},\quad \text{where} \quad Dist(f(x), \bar{y})\in [0,1]
loss=lossCLL+λDist(f(x),yˉ)+11,whereDist(f(x),yˉ)∈[0,1]
λ \lambda λ选取:
a) 常量,通过试验确定
b) 变量
c) 分段函数,引入阈值 α \alpha α
λ = { λ , D i s t ( f ( x ) , y ˉ ) ≤ α , 0 , Otherwise . \lambda=\{ \begin{aligned} \lambda& , & Dist(f(x), \bar{y}) \leq \alpha, \\ 0& , & \text{Otherwise}. \end{aligned} λ={λ0,,Dist(f(x),yˉ)≤α,Otherwise.
(当预测类别标签 f ( x ) f(x) f(x)与给定反标签 y ˉ \bar{y} yˉ距离很小时应该比较敏感)
(MCLL : m i n y i ∈ Y ˉ D i s t ( f ( x ) , y ˉ i ) ≤ α min_{y_i\in\bar{Y}}Dist(f(x), \bar{y}_i) \leq \alpha minyi∈YˉDist(f(x),yˉi)≤α) -
l
o
s
s
=
∑
i
=
1
l
1
D
i
s
t
(
f
(
x
)
,
y
ˉ
)
+
1
l
o
s
s
C
L
L
(
f
(
x
i
)
,
y
ˉ
i
)
loss = \sum^{l}_{i=1} \frac{1}{Dist(f(x), \bar{y})+1} loss_{CLL}(f(x_i), \bar{y}_i)
loss=∑i=1lDist(f(x),yˉ)+11lossCLL(f(xi),yˉi)
将距离函数作为一个置信度,预测标签与反标签距离越小置信度越低 - 放弃以上损失框架(或者也是加和),hinge rank loss中将向量相似度换为距离函数?
- Related work
- 非对称结构 (PLL):
l
o
s
s
=
l
o
s
s
补标签集
+
β
l
o
s
s
反标签集
loss = loss_{\text{补标签集}}+\beta loss_{\text{反标签集}}
loss=loss补标签集+βloss反标签集
系数 β \beta β选取:离散 → \rightarrow →连续(PLL)
“Leveraged Weighted Loss for Partial Label Learning”
- 类似的 (CLL):
l
o
s
s
=
l
o
s
s
反标签集
+
β
∑
数
据
增
强
样
本
集
l
o
s
s
补标签集
loss = loss_{\text{反标签集}}+\beta \sum_{数据增强样本集} loss_{\text{补标签集}}
loss=loss反标签集+β∑数据增强样本集loss补标签集
系数 β \beta β通过实验一开始要小后面要大 → \rightarrow →动态递增变化(0到1)
Partial-Output Consistency Regularization
Model
- 普通CNN模型
- GAN
目前只有一篇代码可用 TAC-GAN