【机器学习】无监督学习--(聚类)Mini Batch K-Means

1. Mini Batch K-Means概述

       Mini-Batch-K-MEANS算法是K-Means算法的变种,采用小批次量的数据子集减少计算时间。这里所谓的小批量是指每次训练算法时所随机抽取的数据子集,采用这些随机产生的子集进行训练算法,大大减小了计算时间,结果一般只略差于标准算法。

2. 算法步骤

1)从数据集中随机抽取一些数据形成小批量,把它们分配给最近的质心。
2)更新质心:与K均值算法相比,数据的过呢更新是在每一个小的样本集上。Mini Batch K-Means比K-Means有更快的收敛速度,但同时也降低了聚类的效果,但是在实际项目中却表现得不明显。

       与K-Means算法对比如图:

在这里插入图片描述

3. 代码实现 – sklearn

注:数据集在文章末尾

from sklearn
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值