论文题目:《FaceNet: A Unified Embedding for Face Recognition and Clustering》
论文地址:FaceNet
1、概述
FaceNet(A Unified Embedding for Face Recognition and Clustering)直接把输入图像变成欧式空间中的特征向量,两个特征向量间的欧式距离就可以用来衡量两者之间的相似度。可以用在人脸验证、识别和聚类任务中。
2、FaceNet介绍
本文提出的思想是:直接通过CNN学习一副输入人脸图像的欧式空间特征,那么两幅图像特征向量间的欧式距离越小,表示两幅图像是同一个人的可能性越大。一旦有了这个人脸图像特征提取模型,那么人脸验证就变成了两幅图像相似度和指定阈值比较的问题;人脸识别就变成了特征向量集的KNN分类问题;人脸聚类就可以通过对人脸特征集进行k-means聚类完成。
前面的算法都是用已知身份的人脸图像集训练一个分类模型,然后取中间某个层的输出作为人脸的特征表示。这种方法的弊端是:不够直接和效率低下。不够直接是指希望学习的指定层的特征可以很好的泛化到未知人脸上;效率低是指一般学习的特征维度很高(大于1000