分为四大块:
- 理论知识
- 实现路径
- 代码实现
- 综合大牛
0. 常用网站
- kaggle
- github
- stackOverflow
- csdn
- Medium
- towardatascience.com
- google AI blog
1. 理论知识
1. Python数据科学
1.1 ZOE
- 博客总览:ZOE | 数林觅风
- 思维导图 :Python 编程核心知识体系
- 其它:还包括数据分析和机器学习等
1.2 Python 3 标准库实例教程
社区有不少文档,不比官网差,比如:
1.3 Vamei
再次认识已逝的Vamei大佬:涉及Python/Linux/网络协议/算法/Java/数据科学等多个领域!!!
2. 数学知识
2.1 Vamei
2.2 商洋
3. 机器学习
3.1 SIGAI (清华-雷明)
- SIGAI 知乎
3.2 zglg
- gitchat chat
Python 数据分析师必备的入门学习路线和技能 - 「Python与算法社区」 公众号
认真就能打动人:273篇干货资料汇总
3.3 白板推导
目录:白板推导机器学习
【强大】有人总结并排版了视频的笔记:Bilibili-机器学习白板系列
4. AI 人工智能(综合)
- AiLearning——很全的开源资源库
- PRML——神书的翻译
Linux
- 阮大佬:阮一峰的网络日志——有很多非常实用的教程,比如 linux shell、ffmpeg…
2. 实现路径
2.1 同龄入门经验
1. 张怡
在深度之眼的经验贴里挖到这个小姐姐,如何从零进阶算法工程师?,讲的比较中肯,有以下收收获:
- 如何开始
方法:
以目标为主(而不是为了推导而推导);
以项目为主(而不是教程);
心态:
不要push自己,乐在其中;
不要想太多,去做;
- 有价值的技术社区(资料、笔记、技术等)
2. jinjin
- 相关知识
- 学习路线
- 最基本的数学工具和机器学习基本概念(3-6个月)
- 从项目开始,入手实际的工程实践
3. 冠军的试炼
搜索 BN 发现的一位学长。
逛了一下他的博客,浏览了其 年度总结 面试总结以及深度深度框架的梳理和【Keras】从两个实际任务掌握图像分类 等,感觉心有惭愧,觉得自己不仅是个专业弱鸡(不仅是个感情菜牙),还是个没有任何准备的菜鸡。
4. Sinan Tang (宝藏博主)
初识思南:写给小白的第一份命令行工具Bash教程——话说读了多篇文章,等搜到简书看到头像才知道sinan是一个妹子!!
今天是0928,前两天迫不及待追了她的几篇博客(很赞,而且符合我的思维),昨晚也加班听了一节她推荐的MTI的(Python)编程经典课程:MIT 6.00 (2008): Introduction to Computer Science and Programming https://bit.ly/2neVySQ(B站链接)…在上课的途中就发现,这个教程的第一节课跟Think Python前面的章节非常相似、跟之前gitchat上的课程也高度相似(关于python的特性等),到最后发现跟思南(Sinan)自己的博客上的内容也很相似,但是她做了梳理和总结,做的比我好太多了!!——就像她在文中所说,(市面上的速成课那么多)当你不知道如何选择时,选择大牛的经典是没有错的!
Sinan 的博客地址:
简书:思南说
个人网站:Sinan Talk
2.2 成熟技术博客
-
谢乾坤-网易高级数据挖掘工程师
大牛!
3. 代码实现/案例实践
3.1 数据科学练习网站:Analytics Vidhya
网站地址:Analytics Vidhya
实例:24个数据科学案例
4. 综合大牛
4.1 郑瀚Andrew.Hann (阿里网络安全)
4.2 v_JULY_v(七月在线创始人)
机器学习十大算法系列
支持向量机通俗导论(理解SVM的三层境界)
4.3 胡晓曼老师(Charlotte)
-
博客园:博客园
-
公众号:Charlotte数据挖掘
- github 的 leetcode 刷题
两个月Leetcode前400题
…
5. 综合资源
ApacheCN (超级赞!)
- 学习网站等资源 超赞!
- 文档资料:计算机电子书 2020 CDNDrive 备份
操作方法:
pip install CDNDrive
cdrive download bdex://58d01ea6fc301d3595f050d07f34db3ff648639a