神经网络
0. 写在前面
初学深度学习脑海中难免会有这些疑问,记录下来以供自己学习:
为什么要研究神经元?
人工神经元是如何构造出来的?
为什么一个人工神经元神经元有多个输入,却只有一个输入?
如何让人工神经元具有学习能力?
前馈神经网络和MLP的区别和联系?
…
1. 大脑神经网络和人工神经元
1.1 大脑神经元
(1)大脑:智能中心
- 重要性
人类的智能行为都和大脑 活动有关。人类大脑是一个可以产生意识、思想和情感的器官。 - 复杂性
人类大脑是人体最复杂的器官,由神经元、神经胶质细胞、神经干细胞和血管组成。
人脑神经系统是一个非常复杂的组织,包含近860亿个神经元 [Azevedo et al., 2009],每个神经元有上千个突触和其它神经元相连接。
(2)大脑神经元:智能的基本单位
神经元(Neuron),也叫神经细胞(Nerve Cell),是携带和传输信息的细胞,是人脑神经系统中最基本的单元。
-
具有输入和输出
神经元可以接受其它神经元的信息,也可以发送信息给其它神经元。 -
只输出两种状态
一个神经元可被视为一种只有两种状态的细胞:兴奋或抑制。(以前看这句话觉得可有可无,现在不了)
神经元的状态取决于从其它的神经细胞收到的输入信号量,及突触强度(抑制或加强)。当信号量总和 超过了某个阈值时,细胞体就会兴奋,产生电脉冲。电脉冲沿着轴突并通过突 触传递到其它神经元。从这两点可以看出:
一个神经元可以有多个输出却只有一个输出——要么兴奋要么抑制(1或0)
一个神经元所接受的实际信息受到输入信号的量和突出强度决定,而其输出除此之外还受到阈值的控制。
人工神经元的设计依据的也就是这。(理解上述第一点内容极度重要,是关键!这也是激活函数至关重要的原因!)