四元素基础理论及其应用

在阅读《Indirect Kalman Filter for 3D Attitude Estimation》一文时,发现文中对四元素的定义采用了非Hamilton方式,阅读有一些冲突,难以转换,至此,决定将该文章转换为Hamilton的表达形式。

1 四元素定义:
q = q w + q x i + q y j + q z k ( 1 ) \bm{q} = q_w + q_x \bm{i} + q_y\bm{j} + q_z\bm{k} \qquad (1) q=qw+qxi+qyj+qzk(1)
其中,虚数单位: i \bm{i} i j \bm{j} j k \bm{k} k满足如下关系:
i 2 = j 2 = k 2 = i j k = − 1 ( 2 ) \bm{i}^2 = \bm{j}^2 = \bm{k}^2 = \bm{ijk} = -1\qquad(2) i2=j2=k2=ijk=1(2)
从而:
i j = − j i = k , j k = − k j = i , k i = − i k = j ( 3 ) \bm{ij} = -\bm{ji} = \bm{k},\quad \bm{jk} = -\bm{kj} = \bm{i}, \quad \bm{ki} = -\bm{ik} = \bm{j} \qquad (3) ij=ji=k,jk=kj=i,ki=ik=j(3)
此外,四元数还可以表达成如下式所示的形式:

常量+向量形式:
q = q w + q v ( 4 ) \bm{q} = q_w + \bm{q}_v \qquad(4) q=qw+qv(4)
其中: q v = q x i + q y j + q z k \bm{q}_v = q_x \bm{i} + q_y\bm{j} + q_z\bm{k} qv=qxi+qyj+qzk

向量形式
q = [ q w q v ] = [ q w q x q y q z ] ( 5 ) \bm{q} = \begin{bmatrix} q_w\\ \bm{q}_v \end{bmatrix} = \begin{bmatrix}q_w\\ q_x \\ q_y \\ q_z \end{bmatrix} \qquad(5) q=[qwqv]=qwqxqyqz(5)

2 四元素的主要性质
2.1 加法运算
q 1 ± q 2 = [ q w 1 q v 1 ] ± [ q w 2 q v 2 ] = [ q w 1 ± q w 2 q v 1 ± q v 2 ] ( 6 ) \bm{q}_1 \pm \bm{q}_2 = \begin{bmatrix}q_{w1} \\ \bm{q}_{v1} \end{bmatrix} \pm \begin{bmatrix}q_{w2} \\ \bm{q}_{v2} \end{bmatrix} = \begin{bmatrix}q_{w1} \pm q_{w2} \\ \bm{q}_{v1} \pm \bm{q}_{v2} \end{bmatrix} \qquad (6) q1±q2=[qw1qv1]±[qw2qv2]=[qw1±qw2qv1±qv2](6)
加法运算满足交换律和结合律:
q 1 + q 2 = q 2 + q 1 ( 7 ) \bm{q}_1 + \bm{q}_2 = \bm{q}_2 + \bm{q}_1 \qquad (7) q1+q2=q2+q1(7)
q 1 + ( q 2 + q 3 ) = ( q 1 + q 2 ) + q 3 ( 8 ) \bm{q}_1 + (\bm{q}_2 + \bm{q}_3) = (\bm{q}_1 + \bm{q}_2) + \bm{q}_3 \qquad(8) q1+(q2+q3)=(q1+q2)+q3(8)

2.2 四元素数乘
k q = [ k q w k q v ] = [ k q w k q x k q y k q z ] ( 9 ) k\bm{q} = \begin{bmatrix} kq_w \\ k\bm{q}_v \end{bmatrix} = \begin{bmatrix} kq_w\\ kq_x\\ kq_y\\ kq_z \end{bmatrix} \qquad (9) kq=[kqwkqv]=kqwkqxkqykqz(9)

2.3 四元素点乘
点乘指的是两个四元素每个对应位置上的数值相乘再求和,即:
q ⋅ p = q w p w + q x p x + q y p y + q z p z ( 10 ) \bm{q} \cdot \bm{p} = q_w p_w + q_xp_x + q_yp_y + q_zp_z \qquad(10) qp=qwpw+qxpx+qypy+qzpz(10)

2.4 乘法运算 ⊗ \otimes
p ⊗ q = [ p w q w − p x q x − p y q y − p z q z p w q x + p x q w + p y q z − p z q y p w q y − p x q z + p y q w + p z q x p w q z + p x q y − p y q x + p z q w ] = [ p w q w − p v ⊤ q v p w q v + q w p v + p v × q v ] ( 11 ) \bm{p} \otimes \bm{q} = \begin{bmatrix} p_w q_w - p_x q_x - p_y q_y - p_z q_z \\ p_w q_x + p_x q_w + p_y q_z - p_z q_y \\ p_w q_y - p_x q_z + p_y q_w + p_z q_x \\ p_w q_z + p_xq_y - p_y q_x + p_z q_w \end{bmatrix} = \begin{bmatrix} p_w q_w - \bm{p}_v ^\top \bm{q}_v\\ p_w \bm{q}_v + q_w \bm{p}_v + \bm{p}_v \times\bm{q}_v \end{bmatrix} \quad (11) pq=pwqwpxqxpyqypzqzpwqx+pxqw+pyqzpzqypwqypxqz+pyqw+pzqxpwqz+pxqypyqx+pzqw=[pwqwpvqvpwqv+qwpv+pv×qv](11)
因(11)式中含有叉乘项,故四元素乘法不满足交换律,即:
p ⊗ q ≠ q ⊗ p ( 12 ) \bm{p} \otimes \bm{q} \neq \bm{q} \otimes \bm{p} \qquad (12) pq=qp(12)
例外:当 p v × q v = 0 \bm{p}_v \times \bm{q}_v = 0 pv×qv=0时,叉乘项为零时满足交换律,此时, p v = 0 \bm{p}_v=0 pv=0 q v = 0 \bm{q}_v=0 qv=0 p v ∣ ∣ q v \bm{p}_v||\bm{q}_v pvqv(即两个向量平行)。

结合律:
( q 1 ⊗ q 2 ) ⊗ q 3 = q 1 ⊗ ( q 2 ⊗ q 3 ) ( 13 ) (\bm{q}_1 \otimes \bm{q}_2) \otimes \bm{q}_3 = \bm{q}_1 \otimes (\bm{q}_2 \otimes \bm{q}_3) \qquad(13) (q1q2)q3=q1(q2q3)(13)

分配律:
q 1 ⊗ ( q 2 + q 3 ) = q 1 ⊗ q 2 + q 1 ⊗ q 3 ( 14 ) \bm{q}_1 \otimes (\bm{q}_2 + \bm{q}_3) = \bm{q}_1 \otimes \bm{q}_2 + \bm{q}_1 \otimes \bm{q}_3 \qquad(14) q1(q2+q3)=q1q2+q1q3(14)
( q 1 + q 2 ) ⊗ q 3 = q 1 ⊗ q 3 + q 2 ⊗ q 3 ( 15 ) (\bm{q}_1 + \bm{q}_2) \otimes \bm{q}_3 = \bm{q}_1 \otimes \bm{q}_3 + \bm{q}_2 \otimes \bm{q}_3 \qquad(15) (q1+q2)q3=q1q3+q2q3(15)

矩阵乘法形式:
根据(11)式,提取出相应的四元素向量,便可以得到:
q 1 ⊗ q 2 = [ q 1 ] L q 2 = [ q w 1 − q x 1 − q y 1 − q z 1 q x 1 q w 1 − q z 1 q y 1 q y 1 q z 1 q w 1 − q x 1 q z 1 − q y 1 q x 1 q w 1 ] q 2 ( 16 ) \bm{q}_1 \otimes \bm{q}_2 = [\bm{q}_1]_L \bm{q}_2=\begin{bmatrix} q_{w1} & -q_{x1} & -q_{y1} & -q_{z1} \\ q_{x1} & q_{w1} & -q_{z1} & q_{y1} \\ q_{y1} & q_{z1} & q_{w1} & -q_{x1} \\ q_{z1} & -q_{y1} & q_{x1} & q_{w1} \end{bmatrix} \bm{q}_2 \qquad (16) q1q2=[q1]Lq2=qw1qx1qy1qz1qx1qw1qz1qy1qy1qz1qw1qx1qz1qy1qx1qw1q2(16)
q 1 ⊗ q 2 = [ q 2 ] R q 1 = [ q w 2 − q x 2 − q y 2 − q z 2 q x 2 q w 2 q z 2 − q y 2 q y 2 − q z 2 q w 2 q x 2 q z 2 q y 2 − q x 2 q w 2 ] q 1 ( 17 ) \bm{q}_1 \otimes \bm{q}_2 = [q_2]_R \bm{q}_1 = \begin{bmatrix} q_{w2} & -q_{x2} & -q_{y2} & -q_{z2} \\ q_{x2} & q_{w2} & q_{z2} & -q_{y2} \\ q_{y2} & -q_{z2} & q_{w2} & q_{x2} \\ q_{z2} & q_{y2} & -q_{x2} & q_{w2} \end{bmatrix} \bm{q}_1 \qquad (17) q1q2=[q2]Rq1=qw2qx2qy2qz2qx2qw2qz2qy2qy2qz2qw2qx2qz2qy2qx2qw2q1(17)
根据(16)和(17)可以得到:
[ q ] L = [ q w − q x − q y − q z q x q w − q z q y q y q z q w − q x q z − q y q x q w ] , [ q ] R = [ q w − q x − q y − q z q x q w q z − q y q y − q z q w q x q z q y − q x q w ] q 1 ( 18 ) [\bm{q}]_L = \begin{bmatrix} q_{w} & -q_{x} & -q_{y} & -q_{z} \\ q_{x} & q_{w} & -q_{z} & q_{y} \\ q_{y} & q_{z} & q_{w} & -q_{x} \\ q_{z} & -q_{y} & q_{x} & q_{w} \end{bmatrix}, \quad [\bm{q}]_R = \begin{bmatrix} q_{w} & -q_{x} & -q_{y} & -q_{z} \\ q_{x} & q_{w} & q_{z} & -q_{y} \\ q_{y} & -q_{z} & q_{w} & q_{x} \\ q_{z} & q_{y} & -q_{x} & q_{w} \end{bmatrix} \bm{q}_1 \qquad (18) [q]L=qwqxqyqzqxqwqzqyqyqzqwqxqzqyqxqw,[q]R=qwqxqyqzqxqwqzqyqyqzqwqxqzqyqxqwq1(18)
进一步可以表示为:
[ q ] L = q w I + [ 0 − q v ⊤ q v q v ∧ ] , [ q ] R = q w I + [ 0 − q v ⊤ q v − q v ∧ ] ( 19 ) [\bm{q}]_L = q_w \mathbf{I} + \begin{bmatrix} 0 & -\bm{q}_v^\top \\ \bm{q}_v & \bm{q}_v^\land \end{bmatrix}, \qquad [\bm{q}]_R = q_w \mathbf{I} + \begin{bmatrix} 0 & -\bm{q}_v^\top \\ \bm{q}_v & -\bm{q}_v^\land \end{bmatrix} \qquad (19) [q]L=qwI+[0qvqvqv],[q]R=qwI+[0qvqvqv](19)
其中:
q ∧ = [ 0 − q z q y q z 0 − q x − q y q x 0 ] ( 20 ) \bm{q} ^ \land = \begin{bmatrix} 0 & -q_z & q_y \\ q_z & 0 & -q_x \\ -q_y & q_x & 0 \end{bmatrix} \qquad (20) q=0qzqyqz0qxqyqx0(20)
是反对称矩阵,即 q ∧ = − [ q ∧ ] ⊤ \bm{q}^\land = -[\bm{q}^\land]^\top q=[q],可用于向量间的叉乘运算:
a × b = a ∧ b , ∀ a , b ∈ R 3 ( 21 ) \bm{a} \times \bm{b} = \bm{a}^\land\bm{b}, \quad \forall \bm{a}, \bm{b} \in \mathbb{R}^3 \qquad (21) a×b=ab,a,bR3(21)

因为:
( q ⊗ x ) ⊗ p = [ p ] R [ q ] L x a n d q ⊗ ( x ⊗ p ) = [ q ] L [ p ] R x ( 22 ) (\bm{q} \otimes \bm{x}) \otimes \bm{p} = [\bm{p}]_R[\bm{q}]_L\bm{x} \quad and \quad \bm{q} \otimes(\bm{x} \otimes \bm{p})=[\bm{q}]_L[\bm{p}]_R\bm{x} \qquad(22) (qx)p=[p]R[q]Lxandq(xp)=[q]L[p]Rx(22)
从而,根据四元素乘法的结合律得:
[ p ] R [ q ] L = [ q ] L [ p ] R ( 23 ) [\bm{p}]_R[\bm{q}]_L = [\bm{q}]_L[\bm{p}]_R \qquad (23) [p]R[q]L=[q]L[p]R(23)

简化写法:
[ q ] L = [ q Ψ ( q ) ] ( 24 ) [\bm{q}]_L = [\bm{q} \quad \mathbf{\Psi}(\bm{q})] \qquad(24) [q]L=[qΨ(q)](24)
其中:
Ψ ( q ) = [ − q v ⊤ q w I 3 × 3 + q v ∧ ] ( 25 ) \mathbf{\Psi}(\bm{q}) = \begin{bmatrix} -\bm{q}_v^\top \\ q_w\mathbf{I}_{3\times3} + \bm{q}_v^\land \end{bmatrix} \qquad (25) Ψ(q)=[qvqwI3×3+qv](25)
同理:
[ q ] R = [ q Ξ ( q ) ] ( 26 ) [\bm{q}]_R = [\bm{q} \quad \mathbf{\Xi}(\bm{q})] \qquad(26) [q]R=[qΞ(q)](26)
其中:
Ξ ( q ) = [ − q v ⊤ q w I 3 × 3 − q v ∧ ] ( 27 ) \mathbf{\Xi}(\bm{q}) = \begin{bmatrix} -\bm{q}_v^\top \\ q_w\mathbf{I}_{3\times3} - \bm{q}_v^\land \end{bmatrix} \qquad (27) Ξ(q)=[qvqwI3×3qv](27)

此外,对于unit quaternion q \bm{q} q有:
[ q − 1 ] L = [ q ] L ⊤ ( 28 ) [\bm{q}^{-1}]_L = [\bm{q}]_L^\top \qquad (28) [q1]L=[q]L(28)
[ q − 1 ] R = [ q ] R ⊤ ( 29 ) [\bm{q}^{-1}]_R = [\bm{q}]_R^\top \qquad (29) [q1]R=[q]R(29)

2.5 Identity quaternion
q 1 = 1 = [ 1 0 v ] ( 30 ) \bm{q}_1 = 1 = \begin{bmatrix} 1 \\ \bm{0}_v \end{bmatrix} \qquad (30) q1=1=[10v](30)
满足:
q 1 ⊗ q = q ⊗ q 1 = q ( 31 ) \bm{q}_1 \otimes \bm{q} = \bm{q} \otimes \bm{q}_1 = \bm{q} \qquad(31) q1q=qq1=q(31)

2.6 共轭
四元素的共轭为:
q ∗ = [ q w − q v ] ( 32 ) \bm{q}^* = \begin{bmatrix} q_w\\ -\bm{q}_v \end{bmatrix} \qquad(32) q=[qwqv](32)
共轭四元素的性质:
q ⊗ q ∗ = q ∗ ⊗ q = [ q w 2 + q x 2 + q y 2 + q z 2 0 v ] ( 32 ) \bm{q} \otimes \bm{q}^* = \bm{q}^* \otimes \bm{q} = \begin{bmatrix} q_w^2 + q_x^2 + q_y^2 + q_z^2 \\ \bm{0}_v \end{bmatrix} \qquad (32) qq=qq=[qw2+qx2+qy2+qz20v](32)

以及:
( p ⊗ q ) ∗ = q ∗ ⊗ p ∗ ( 33 ) (\bm{p} \otimes \bm{q})^* = \bm{q}^* \otimes \bm{p}^* \qquad (33) (pq)=qp(33)

2.7 四元素的模
定义:
∣ ∣ q ∣ ∣ = q ⊗ q ∗ = q ∗ ⊗ q = q w 2 + q x 2 + q y 2 + q z 2 ( 34 ) ||\bm{q}|| = \sqrt{\bm{q} \otimes \bm{q}^*} = \sqrt{\bm{q}^* \otimes \bm{q}} = \sqrt{q_w^2 + q_x^2 + q_y^2 + q_z^2} \qquad (34) q=qq =qq =qw2+qx2+qy2+qz2 (34)

模的性质:
∣ ∣ p ⊗ q ∣ ∣ = ∣ ∣ q ⊗ p ∣ ∣ = ∣ ∣ p ∣ ∣ ∣ ∣ q ∣ ∣ ( 35 ) ||\bm{p} \otimes \bm{q}|| = ||\bm{q} \otimes \bm{p}|| = ||\bm{p}|| ||\bm{q}|| \qquad (35) pq=qp=pq(35)
简单推导:
∣ ∣ p ⊗ q ∣ ∣ 2 = ( p ⊗ q ) ⊗ ( p ⊗ q ) ∗ = p ⊗ q ⊗ q ∗ ⊗ p ∗ = p ⊗ ( q ⊗ q ∗ ) ⊗ p ∗ = p ⊗ [ ∣ ∣ q ∣ ∣ 2 0 v ] ⊗ p ∗ = p ⊗ p ∗ ⊗ [ ∣ ∣ q ∣ ∣ 2 0 v ] = ( ∣ ∣ p ∣ ∣ ∣ ∣ q ∣ ∣ ) 2 ||\bm{p} \otimes \bm{q}||^2 = (\bm{p} \otimes \bm{q}) \otimes (\bm{p} \otimes\bm{q})^* = \bm{p} \otimes\bm{q}\otimes\bm{q}^*\otimes\bm{p}^* = \bm{p}\otimes(\bm{q}\otimes\bm{q}^*)\otimes\bm{p}^*=\bm{p} \otimes\begin{bmatrix} ||\bm{q}||^2 \\ \bm{0}_v \end{bmatrix} \otimes\bm{p}^* = \bm{p} \otimes \bm{p}^* \otimes \begin{bmatrix} ||\bm{q}||^2 \\ \bm{0}_v \end{bmatrix} = (||\bm{p}||||\bm{q}||)^2 pq2=(pq)(pq)=pqqp=p(qq)p=p[q20v]p=pp[q20v]=(pq)2

2.8 四元素的逆
四元素的逆记为 q − 1 \bm{q}^{-1} q1,,其满足如下条件:
q ⊗ q − 1 = q − 1 ⊗ q = q 1 ( 36 ) \bm{q} \otimes \bm{q}^{-1} = \bm{q}^{-1} \otimes \bm{q} = \bm{q}_1 \qquad(36) qq1=q1q=q1(36)
其中 q 1 \bm{q}_1 q1为"Identity quaternion“, 逆通过下式计算:
q − 1 = q ∗ / ∣ ∣ q ∣ ∣ 2 ( 37 ) \bm{q}^{-1} = \bm{q}^*/||\bm{q}||^2 \qquad (37) q1=q/q2(37)

2.9 Unit or normalized quaternion
对于unit quaternion有, ∣ ∣ q ∣ ∣ = 1 ||\bm{q}|| = 1 q=1,所以:
q − 1 = q ∗ ( 38 ) \bm{q}^{-1} = \bm{q}^* \qquad(38) q1=q(38)

3 旋转四元素
形式:
q = [ cos ⁡ ( θ / 2 ) u sin ⁡ ( θ / 2 ) ] = [ cos ⁡ ( θ / 2 ) u x sin ⁡ ( θ / 2 ) u y sin ⁡ ( θ / 2 ) u z sin ⁡ ( θ / 2 ) ] ( 39 ) \bm{q} = \begin{bmatrix} \cos (\theta / 2) \\ \bm{u} \sin (\theta/2) \end{bmatrix} = \begin{bmatrix} \cos (\theta/2) \\ u_x \sin (\theta/2) \\ u_y \sin (\theta/2) \\ u_z \sin (\theta/2) \end{bmatrix} \qquad (39) q=[cos(θ/2)usin(θ/2)]=cos(θ/2)uxsin(θ/2)uysin(θ/2)uzsin(θ/2)(39)
其中,旋转轴为 u \bm{u} u,为单位向量,旋转角度为 θ \theta θ,将向量 x \bm{x} x u \bm{u} u轴旋转 θ \theta θ即可表示为:
x ′ = q ⊗ x ⊗ q ∗ ( 40 ) \bm{x}' = \bm{q} \otimes \bm{x} \otimes \bm{q}^* \qquad (40) x=qxq(40)
可以验证,旋转四元素为unit quaternion,跟unit quaternion一样 具有如下性质:
( p ⊗ q ) − 1 = q − 1 ⊗ p − 1 ( 41 ) (\bm{p} \otimes \bm{q})^{-1} = \bm{q}^{-1}\otimes\bm{p}^{-1} \qquad(41) (pq)1=q1p1(41)

在介绍四元素基本的定义及相关性质之后,将对《Indirect Kalman Filter for 3D Attitude Estimation》一文当中的相关内容进行转义。

》1.3 Userful Identites
》1.3.1 叉乘反对称矩阵的相关属性
Anti-Commutativity
w ∧ = − [ w ∧ ] ⊤ ( 42 ) \bm{w}^\land = -[\bm{w}^\land]^\top \qquad(42) w=[w](42)
a ∧ b = − b ∧ a ⇔ − b ⊤ a ∧ = a ⊤ b ∧ ( 43 ) \bm{a}^\land\bm{b} = -\bm{b}^\land\bm{a} \quad \Leftrightarrow \quad -\bm{b}^\top \bm{a}^\land = \bm{a}^\top\bm{b}^\land \qquad (43) ab=baba=ab(43)

Distributivity orver Addition
a ∧ + b ∧ = ( a + b ) ∧ ( 44 ) \bm{a}^\land + \bm{b}^\land = (\bm{a} + \bm{b})^\land \qquad(44) a+b=(a+b)(44)

数乘
c ⋅ w ∧ = ( c w ) ∧ ( 45 ) c \cdot \bm{w}^\land = (c\bm{w})^\land \qquad(45) cw=(cw)(45)

平行向量的叉乘
w × ( c w ) = c ⋅ w ∧ w = − c ⋅ ( w ⊤ w ∧ ) ⊤ = 0 3 × 1 ( 46 ) \bm{w} \times (c\bm{w}) = c \cdot\bm{w}^\land\bm{w} = -c \cdot(\bm{w}^\top\bm{w}^\land)^\top = \bm{0}_{3\times1} \qquad(46) w×(cw)=cww=c(ww)=03×1(46)

拉格朗日公式
a ∧ b ∧ = b a ⊤ − ( a ⊤ b ) I 3 × 3 ( 47 ) \bm{a}^\land\bm{b}^\land=\bm{b}\bm{a}^\top-(\bm{a}^\top\bm{b})\mathbf{I}_{3\times3} \qquad (47) ab=ba(ab)I3×3(47)
⇔ a × ( b × c ) = b ( a ⊤ c ) − c ( a ⊤ b ) ( 48 ) \Leftrightarrow \bm{a} \times (\bm{b} \times \bm{c}) = \bm{b}(\bm{a}^\top\bm{c}) - \bm{c}(\bm{a}^\top\bm{b}) \qquad (48) a×(b×c)=b(ac)c(ab)(48)

( a × b ) ∧ = b a ⊤ − a b ⊤ ( 49 ) (\bm{a} \times \bm{b})^\land = \bm{b}\bm{a}^\top-\bm{a}\bm{b}^\top \qquad (49) (a×b)=baab(49)

Jacobi Identity
a × ( b × c ) + b × ( c × a ) + c × ( a × b ) = 0 ( 49 ) \bm{a} \times (\bm{b} \times \bm{c}) + \bm{b} \times (\bm{c} \times \bm{a}) + \bm{c} \times (\bm{a} \times \bm{b}) = \bm{0} \qquad (49) a×(b×c)+b×(c×a)+c×(a×b)=0(49)
\qquad or
a ∧ b ∧ c + b ∧ c ∧ a + c ∧ a ∧ b = 0 ( 50 ) \bm{a}^\land\bm{b}^\land\bm{c} + \bm{b}^\land\bm{c}^\land\bm{a} + \bm{c}^\land\bm{a}^\land\bm{b}= \bm{0} \qquad(50) abc+bca+cab=0(50)

Rotations
( R a ) ∧ = R a ∧ R ⊤ ( 51 ) p r o o f . ( R a ) × b = ( R a ) × ( R R ⊤ b ) = R [ a × ( R ⊤ b ) ] = R a ∧ R ⊤ b ⇒ ( R a ) ∧ = R a ∧ R ⊤ (\bm{R}\bm{a})^\land = \bm{R}\bm{a}^\land\bm{R}^\top \qquad (51) \\ proof.\quad (\bm{Ra}) \times \bm{b} = (\bm{Ra}) \times (\bm{RR^\top b}) = \bm{R}[\bm{a} \times(\bm{R^\top b})]=\bm{R}\bm{a}^\land\bm{R}^\top\bm{b} \\ \Rightarrow (\bm{Ra})^\land = \bm{Ra}^\land\bm{R}^\top (Ra)=RaR(51)proof.(Ra)×b=(Ra)×(RRb)=R[a×(Rb)]=RaRb(Ra)=RaR
R ( a × b ) = ( R a ) × ( R b ) ( 52 ) \bm{R}(\bm{a} \times \bm{b}) = (\bm{R}\bm{a}) \times (\bm{R}\bm{b}) \qquad(52) R(a×b)=(Ra)×(Rb)(52)

叉乘反对称矩阵
( w ∧ ) 2 = w w ⊤ − ∣ w ∣ 2 I ( 53 ) (\bm{w}^\land)^2 = \bm{ww}^\top - |\bm{w}|^2 \mathbf{I} \qquad(53) (w)2=www2I(53)

( w ∧ ) 3 = ( w w ⊤ − ∣ w ∣ 2 I ) w ∧ = w w ⊤ w ∧ − ∣ w ∣ 2 w ∧ = w ( − w ∧ w ) ⊤ − ∣ w ∣ 2 w ∧ = − ∣ w ∣ 2 w ∧ ( 54 ) \begin{aligned} (\bm{w}^\land)^3 & = (\bm{ww}^\top - |\bm{w}|^2\mathbf{I})\bm{w}^\land\\ & = \bm{w}\bm{w}^\top\bm{w}^\land-|\bm{w}|^2\bm{w}^\land\\ & =\bm{w}(-\bm{w}^\land\bm{w})^\top - |\bm{w}|^2\bm{w}^\land\\ & = -|\bm{w}|^2\bm{w}^\land \end{aligned} \qquad (54) (w)3=(www2I)w=wwww2w=w(ww)w2w=w2w(54)

( w ∧ ) 4 = ( w ∧ ) 3 w ∧ = − ∣ w ∣ 2 ( w ∧ ) 2 ( 55 ) \begin{aligned} (\bm{w}^\land)^4 & = (\bm{w}^\land)^3\bm{w}^\land\\ & = -|\bm{w}|^2(\bm{w}^\land)^2 \end{aligned} \qquad (55) (w)4=(w)3w=w2(w)2(55)

( w ∧ ) 5 = ( w ∧ ) 4 w ∧ = − ∣ w ∣ 2 ( w ∧ ) 3 = − ∣ w ∣ 2 ( − ∣ w ∣ 2 w ∧ ) = ∣ w ∣ 4 w ∧ ( 56 ) \begin{aligned} (\bm{w}^\land)^5 & = (\bm{w}^\land)^4\bm{w}^\land \\ &=-|\bm{w}|^2(\bm{w}^\land)^3\\ &=-|\bm{w}|^2(-|\bm{w}|^2\bm{w}^\land)\\ &=|\bm{w}|^4\bm{w}^\land \qquad (56) \end{aligned} (w)5=(w)4w=w2(w)3=w2(w2w)=w4w(56)

( w ∧ ) 6 = ( w ∧ ) 5 w ∧ = ∣ w ∣ 4 ( w ∧ ) 2 ( 57 ) \begin{aligned} (\bm{w}^\land)^6 & = (\bm{w}^\land)^5\bm{w}^\land\\ &= |\bm{w}|^4(\bm{w}^\land)^2 \qquad(57) \end{aligned} (w)6=(w)5w=w4(w)2(57)

( w ∧ ) 7 = ( w ∧ ) 6 w ∧ = ∣ w ∣ 4 ( w ∧ ) 3 = ∣ w ∣ 4 ( − ∣ w ∣ 2 w ∧ ) = − ∣ w ∣ 6 w ∧ ( 58 ) . . . . . . \begin{aligned} (\bm{w}^\land)^7 &= (\bm{w}^\land)^6\bm{w}^\land\\ &=|\bm{w}|^4(\bm{w}^\land)^3\\ &=|\bm{w}|^4(-|\bm{w}|^2\bm{w}^\land)\\ &=-|\bm{w}|^6\bm{w}^\land \qquad(58)\\ &...... \end{aligned} (w)7=(w)6w=w4(w)3=w4(w2w)=w6w(58)......

》1.3.2 Properties of the matrix Ω \mathbf{\Omega} Ω
Ω \mathbf{\Omega} Ω矩阵出现在一个向量与四元素的乘积当中,可用于四元素的求导,它具有以下性质:
Ω ( w ) = [ 0 − w x − w y − w z w x 0 w z − w y w y − w z 0 w x w z w y − w x 0 ] = [ 0 − w ⊤ w − w ∧ ] ( 59 ) \begin{aligned} \mathbf{\Omega}(\bm{w}) &=\begin{bmatrix} 0 & -w_x & -w_y & -w_z\\ w_x & 0 & w_z & -w_y\\ w_y & -w_z& 0 & w_x \\ w_z & w_y & -w_x & 0 \end{bmatrix}\\ & = \begin{bmatrix} 0 & -\bm{w}^\top\\ \bm{w} & -\bm{w}^\land \end{bmatrix} \end{aligned} \qquad (59) Ω(w)=0wxwywzwx0wzwywywz0wxwzwywx0=[0www](59)

Ω ( w ) 2 = [ − w ⊤ w w ⊤ w ∧ − w ∧ w − w w ⊤ + w ∧ w ∧ ] = [ − ∣ ∣ w ∣ ∣ 2 0 1 × 3 0 3 × 1 − ∣ ∣ w ∣ ∣ 2 I 3 × 3 ] = − ∣ ∣ w ∣ ∣ 2 I 4 × 4 ( 60 ) \begin{aligned} \mathbf{\Omega}(\bm{w})^2 & = \begin{bmatrix} -\bm{w}^\top\bm{w} & \bm{w}^\top\bm{w}^\land\\ -\bm{w}^\land\bm{w} & -\bm{ww}^\top+\bm{w}^\land\bm{w}^\land\\ \end{bmatrix}\\ &=\begin{bmatrix} -||\bm{w}||^2 & \mathbf{0}_{1\times3} \\ \mathbf{0}_{3\times1}& -||\bm{w}||^2\mathbf{I}_{3\times3} \end{bmatrix}\\ &=-||\bm{w}||^2\mathbf{I}_{4\times4} \qquad\qquad\qquad\qquad (60) \end{aligned} Ω(w)2=[wwwwwwww+ww]=[w203×101×3w2I3×3]=w2I4×4(60)

Ω ( w ) 3 = − ∣ ∣ w ∣ ∣ 2 Ω ( w ) ( 61 ) \mathbf{\Omega}(\bm{w})^3 = -||\bm{w}||^2\mathbf{\Omega}(\bm{w}) \qquad(61) Ω(w)3=w2Ω(w)(61)

Ω ( w ) 4 = ∣ ∣ w ∣ ∣ 4 I 4 × 4 ( 62 ) \mathbf{\Omega}(\bm{w})^4 = ||\bm{w}||^4\mathbf{I}_{4\times4} \qquad(62) Ω(w)4=w4I4×4(62)

Ω ( w ) 5 = ∣ ∣ w ∣ ∣ 4 Ω ( w ) ( 63 ) \mathbf{\Omega}(\bm{w})^5 = ||\bm{w}||^4\mathbf{\Omega}(\bm{w}) \qquad(63) Ω(w)5=w4Ω(w)(63)

Ω ( w ) 6 = − ∣ ∣ w ∣ ∣ 6 I 4 × 4 ( 64 ) \mathbf{\Omega}(\bm{w})^6 = -||\bm{w}||^6\mathbf{I}_{4\times4} \qquad(64) Ω(w)6=w6I4×4(64)

1.3.3 Properties of the matrix Ξ \mathbf{\Xi} Ξ

Ψ ( q ) = [ − q v ⊤ q w I 3 × 3 + q v ∧ ] , Ψ ⊤ ( q ) = [ − q v q w I 3 × 3 − q v ∧ ] ( 65 ) \mathbf{\Psi}(\bm{q}) = \begin{bmatrix} -\bm{q}_v^\top \\ q_w\mathbf{I}_{3\times3} + \bm{q}_v^\land \end{bmatrix}, \quad\mathbf{\Psi}^\top(\bm{q})=[-\bm{q}_v\quad q_w\mathbf{I}_{3\times3}-\bm{q}_v^\land] \qquad (65) Ψ(q)=[qvqwI3×3+qv],Ψ(q)=[qvqwI3×3qv](65)

⇒ Ψ ⊤ ( q ) Ψ ( q ) = ∣ ∣ q ∣ ∣ 2 I 3 × 3 ( 66 ) Ψ ( q ) Ψ ⊤ ( q ) = ∣ ∣ q ∣ ∣ I 4 × 4 − q q ⊤ ( 67 ) Ψ ⊤ ( q ) q = 0 3 × 1 ( 68 ) \begin{aligned} \Rightarrow \qquad \mathbf{\Psi}^\top(\bm{q})\mathbf{\Psi}(\bm{q}) & = ||\bm{q}||^2\mathbf{I}_{3\times3} \qquad(66)\\ \mathbf{\Psi}(\bm{q})\mathbf{\Psi}^\top(\bm{q}) &= ||\bm{q}||\mathbf{I}_{4\times4}-\bm{q}\bm{q}^\top\qquad(67)\\ \mathbf{\Psi}^\top(\bm{q})\bm{q}&=\mathbf{0}_{3\times1} \qquad (68) \end{aligned} Ψ(q)Ψ(q)Ψ(q)Ψ(q)Ψ(q)q=q2I3×3(66)=qI4×4qq(67)=03×1(68)

Ξ \mathbf{\Xi} Ξ Ω \mathbf{\Omega} Ω之间的关系为:
Ω ( w ) q = Ψ ( q ) w ( 69 ) \mathbf{\Omega}(\bm{w})\bm{q}=\mathbf{\Psi}(\bm{q})\bm{w} \qquad(69) Ω(w)q=Ψ(q)w(69)

》1.4 四元素与旋转矩阵之间的关系
给定旋转四元素 q = cos ⁡ ( θ / 2 ) + u sin ⁡ ( θ / 2 ) \bm{q}=\cos(\theta/2)+\bm{u}\sin(\theta/2) q=cos(θ/2)+usin(θ/2),对应的旋转矩阵记为 R ( q ) \mathbf{R}(\bm{q}) R(q),则
R ( q ) = ( 2 q w 2 − 1 ) I + 2 q v q v ⊤ + 2 q w q v ∧ ( 70 ) \mathbf{R}(\bm{q})=(2q_w^2-1)\mathbf{I} + 2\bm{q}_v\bm{q}_v^\top + 2q_w\bm{q}_v^\land \qquad(70) R(q)=(2qw21)I+2qvqv+2qwqv(70)
其中:
q w = cos ⁡ ( θ / 2 ) , q v = u sin ⁡ ( θ / 2 ) q_w = \cos(\theta/2), \quad\bm{q}_v=\bm{u}\sin(\theta/2) qw=cos(θ/2),qv=usin(θ/2)
或者表示为:
R ( q ) = Ξ ⊤ ( q ) Ψ ( q ) ( 71 ) \mathbf{R}(\bm{q})=\mathbf{\Xi}^\top(\bm{q})\mathbf{\Psi}(\bm{q}) \qquad(71) R(q)=Ξ(q)Ψ(q)(71)

或者表示为:
R ( q ) = [ 1 − 2 q y 2 − 2 q z 2 2 q x q y − 2 q w q z 2 q x q z + 2 q w q y 2 q x q y + 2 q w q z 1 − 2 q x 2 − 2 q z 2 2 q y q z − 2 q w q x 2 q x q z − 2 q w q y 2 q y q z + 2 q w q x 1 − 2 q x 2 − 2 q y 2 ] ( 72 ) \mathbf{R}(\bm{q}) = \begin{bmatrix} 1-2q_y^2-2q_z^2 & 2q_xq_y - 2q_wq_z & 2q_xq_z + 2q_wq_y \\ 2q_xq_y+2q_wq_z & 1-2q_x^2-2q_z^2 & 2q_yq_z-2q_wq_x\\ 2q_xq_z-2q_wq_y& 2q_yq_z+2q_wq_x& 1-2q_x^2-2q_y^2 \end{bmatrix} \qquad(72) R(q)=12qy22qz22qxqy+2qwqz2qxqz2qwqy2qxqy2qwqz12qx22qz22qyqz+2qwqx2qxqz+2qwqy2qyqz2qwqx12qx22qy2(72)

旋转矩阵的乘法与旋转四元素的乘法之间的关系:
R ( 0 q 1 ) R ( 1 q 2 ) = R ( 0 q 1 ⊗ 1 q 2 ) ( 73 ) \mathbf{R}(\bm{^0q_1})\mathbf{R}(^1\bm{q}_2) = \mathbf{R}(^0\bm{q}_1 \otimes {^1}\bm{q}_2) \qquad(73) R(0q1)R(1q2)=R(0q11q2)(73)
指数映射
R ( q ) = e x p ( θ u ∧ ) ( 74 ) \mathbf{R}(\bm{q}) = exp(\theta\bm{u}^\land) \qquad (74) R(q)=exp(θu)(74)
》1.5 四元素对时间的导数

待续。。。。。。

参考文献:
[1] Indirect Kalman Filter for 3D Attitude Estimation
[2] Quaternion kinematics for the error-state Kalman filter
[3] 视觉SLAM十四讲 从理论到实践

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值