四元素定义、运算、插值、与欧拉角之间的转换

本文详细介绍了3D图形学中常用的旋转表示方法——四元数和欧拉角,强调了它们相对于矩阵的优势。讨论了两者之间的转换公式,并给出了四元数的定义、共轭、逆以及插值方法。同时,阐述了如何使用四元数对三维点进行坐标变换,以及欧拉角到四元数和四元数到欧拉角的转换计算。此外,还提及在不同坐标系下应用这些概念时需要注意的坐标轴调整。
摘要由CSDN通过智能技术生成

本文由 简悦 SimpRead 转码, 原文地址 blog.csdn.net

在 3D 图形学中,最常用的旋转表示方法便是四元数和欧拉角,比起矩阵来具有节省存储空间和方便插值的优点。本文主要归纳了两种表达方式的转换,计算公式采用 3D 笛卡尔坐标系:

定义分别为绕 Z 轴、Y 轴、X 轴的旋转角度,如果用 Tait-Bryan angle 表示,分别为 Yaw、Pitch、Roll。

四元数的定义

单位四元素

通过旋转轴和绕该轴旋转的角度可以构造一个四元数:

其中是绕旋转轴旋转的角度,为旋转轴在 x,y,z 方向的分量(由此确定了旋转轴)。

四元素的一般记法:

欧拉证明了 一个旋转序列等价于单个旋转。想象一下,你有一根木棒,其中一端固定在一个地方,通过任意移动木棒,可以达到任意的角度。

四元素的一般形式:

q = w + xi + yj + zk   w,x,y,z∈R

w== 木棒的长度,(i,j,k)相当于三维空间的坐标。

四元素的叉乘

根据四元素的一般形式,令 i 代表 x 轴的正方向, j 代表 y 轴正方向, k 代表 z 轴正方向。

根据右手坐标系定则,有定义 4:

i × j = k, j × k = i

k × i = j, j × i = -k

i × k = -j, i × k = -j,

ixi = jxj = kxk = ixjxk = -1

写成矩阵形式:

四元素的共轭:

q’ = [w,(-x, -y, -z)]

四元素的逆

定义为四元素的共轭除以他的模。

四元素插值

四元数插值常见的有线性插值、球面线性插值等。详情参考

四元素对三维点进行坐标变换

一个实数、三维向量可视为四元素,实数 a 的四元素表示为(a,0,0,0), 三维向量 (x,y,z) 的四元素表示为(0,x,y,z)

单位四元数可用于旋转。该单位四元数可以表示为 q=(q1,q2,q3,q4).

对一个点 P=(x,y,z),纯四元数 w 为(0,x,y,z),经四元数旋转操作后也是一个纯四元数,其中就是 P 点经过 q 旋转后得到的坐标。之所以使用纯四元数,是因为纯四元数代表了三维空间的一个点,而纯四元数经过上述旋转操作后得到的还是一个纯四元数,即还是一个三维空间中的点。

欧拉角到四元数的转换

四元数到欧拉角的转换

arctanarcsin 的结果是,这并不能覆盖所有朝向 (对于的取值范围已经满足),因此需要用 atan2 来代替 arctan

四元素到旋转矩阵

参考

在其他坐标系下使用

在其他坐标系下,需根据坐标轴的定义,调整一下以上公式。如在 Direct3D 中,笛卡尔坐标系的 X 轴变为 Z 轴,Y 轴变为 X 轴,Z 轴变为 Y 轴(无需考虑方向)。

参考文献:

[1] http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles

[2] Ken Shoemake, Animating Rotation with Quaternion Curves, 1985

[3] https://www.cnblogs.com/wqj1212/archive/2010/11/21/1883033.html

[4] https://blog.csdn.net/studylearnjava/article/details/79978141

[5] https://zhuanlan.zhihu.com/p/22578991

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值