四元数原理学习笔记

四元数的数学性质

定义

1.1:一般形式
q = s + x i + y j + z k s , x , y , z ∈ R \textbf{q} = s + x\textbf{i} + y\textbf{j} +z\textbf{k}\quad s,x,y,z\in\mathbb R q=s+xi+yj+zks,x,y,zR

1.2:虚数单位的运算规则
四元数将复数中的虚数单位扩充为三个,这三个虚数单位的运算规则是:
i 2 = j 2 = k 2 = ijk = − 1 ij = k , jk = i , ki = j \textbf{i}^2=\textbf{j}^2=\textbf{k}^2=\textbf{ijk}=-1\\ \textbf{ij}=\textbf{k},\textbf{jk}=\textbf{i},\textbf{ki}=\textbf{j} i2=j2=k2=ijk=1ij=k,jk=i,ki=j

四元数的这三个虚数单位以及他们的乘法运算很像是三维空间中三个正交单位向量的叉乘的关系:两个正交的单位向量的叉乘等于另一个单位向量,这个单位向量一定与其他两个单位向量都正交。那不妨就将这三个虚数代表三维空间中的三个正交的单位向量。

1.3:四元数的加法和乘法
四元数的加法和乘法可以看作是复数加法和乘法在虚数单位扩充之后的运算。其加法同样满足交换律,乘法满足结合律。

1.4:四元数的乘积一般式
记向量:
a = x a i + y a j + z a k b = x b i + y b j + z b k \textbf{a}=x_a\textbf{i}+y_a\textbf{j}+z_a\textbf{k}\\ \textbf{b}=x_b\textbf{i}+y_b\textbf{j}+z_b\textbf{k} a=xai+yaj+zakb=xbi+ybj+zbk

依照向量的运算法则,点积和叉乘结果如下:
a ⋅ b = x a x b + y a y b + z a z b a × b = ( y a z b − y b z a ) i + ( z a x b − z b x a ) j + ( x a y b − x b y a ) k \textbf{a}\cdot \textbf{b} = x_ax_b+y_ay_b+z_az_b\\ \textbf{a}\times\textbf{b}=(y_az_b-y_bz_a)\textbf{i}+(z_ax_b-z_bx_a)\textbf{j}+(x_ay_b-x_by_a)\textbf{k} ab=xaxb+yayb+zazba×b=(yazbybza)i+(zaxbzbxa)j+(xaybxbya)k

则两个四元数的乘积可以表示为:
q a q b = [ s a , a ] ⋅ [ s b , b ] = [ s a s b − a ⋅ b , s a b + s b a + a × b ] \begin{aligned} \textbf{q}_a\textbf{q}_b & = [s_a,\textbf{a}]\cdot[s_b,\textbf{b}]\\ &= [s_as_b-\textbf{a}\cdot\textbf{b},s_a\textbf{b}+s_b\textbf{a}+\textbf{a}\times\textbf{b}] \end{aligned} qaqb=[sa,a][sb,b]=[sasbab,sab+sba+a×b]

1.5:纯四元数
纯四元数是实部为 0 0 0的四元数
q = [ 0 , v ] \textbf{q}=[0,\textbf{v}] q=[0,v]

两个纯四元数的乘积为
q a q b = [ 0 , a ] ⋅ [ 0 , b ] = [ − a ⋅ b , a × b ] \begin{aligned} \textbf{q}_a\textbf{q}_b&=[0,\textbf{a}]\cdot[0,\textbf{b}]\\ &=[-\textbf{a}\cdot\textbf{b},\textbf{a}\times\textbf{b}] \end{aligned} qaqb=[0,a][0,b]=[ab,a×b]

1.6:单位四元数
对于向量 v v v,其可以写作其长度(范式)乘以一个单位向量
v = ∣ v ∣ v ^ \textbf{v} = |\textbf{v}|\hat{\textbf{v}} v=vv^
其中
∣ v ^ ∣ = 1 |\hat{\textbf{v}}|=1 v^=1
那么一个单位四元数的定义为实部为 0 0 0,虚部的范式为 1 1 1的四元数
q ^ = [ 0 , v ^ ] \hat{\textbf{q}}=[0,\hat{\textbf{v}}] q^=[0,v^]

将单位四元数与复数中的虚数单位作类比,有如下相似表示:
复 数 : z = a + b i 四 元 数 : q = s + v q ^ \begin{aligned} 复数&:&\textbf{z}=a+b\textbf{i}\\ 四元数&:&\textbf{q}=s+v\hat{\textbf{q}} \end{aligned} z=a+biq=s+vq^

1.7:共轭四元数
一个四元数 q \textbf{q} q的共轭即将其虚部向量取反
q = [ s , v ] q ∗ = [ s , − v ] \textbf{q}=[s,\textbf{v}]\\ \textbf{q}^*=[s,-\textbf{v}] q=[s,v]q=[s,v]
再根据1.4节得到的乘积一般式有:
qq ∗ = [ s 2 + v 2 , 0 ] = s 2 + v 2 \textbf{qq}^*=[s^2+\textbf{v}^2,\textbf{0}]=s^2+v^2 qq=[s2+v2,0]=s2+v2
注意这里的 v 2 \textbf{v}^2 v2是指两个向量的点积,等价于 ∣ v ∣ 2 = v 2 = a 2 + b 2 + c 2 |\textbf{v}|^2=v^2=a^2+b^2+c^2 v2=v2=a2+b2+c2,不可将其看作是 ( a i + b j + c k ) 2 (a\textbf{i}+b\textbf{j}+c\textbf{k})^2 (ai+bj+ck)2再用乘法结合律求解。

1.8:四元数的范数
四元数的范数的平方等于实部的平方加上虚部向量的范数,即
∣ q ∣ 2 = s 2 + v 2 = s 2 + v 2 |\textbf{q}|^2=s^2+\textbf{v}^2=s^2+v^2 q2=s2+v2=s2+v2

qq ∗ = ∣ q ∣ 2 \textbf{qq}^*=|\textbf{q}|^2 qq=q2

1.9:四元数的规范化
四元数的规范化定义为将四元数除以它的范数
q ′ = q |q| \textbf{q}'=\frac{\textbf{q}}{\textbf{|\textbf{q}|}} q=|q|q

1.10:四元数的逆
四元数的逆定义为:存在这样一个四元数 q − 1 \textbf{q}^{-1} q1使得以下式子成立:
qq − 1 = [ 1 , 0 ] = 1 \textbf{qq}^{-1}=[1,\textbf{0}]=1 qq1=[1,0]=1
则称这个四元数 q − 1 \textbf{q}^{-1} q1 q \textbf{q} q的逆。可以证明,四元数的逆可以用下列式子计算得到:
q − 1 = q ∗ ∣ q ∣ 2 \textbf{q}^{-1}=\frac{\textbf{q}^*}{|\textbf{q}|^2} q1=q2q

1.11:四元数的点积
四元数的点积等于实部和虚部各个部分分别相乘,其与向量的点积定义相似:
q 1 = [ s 1 , x 1 i + y 1 j + z 1 k ] q 2 = [ s 2 , x 2 i + y 2 j + z 2 k ] \textbf{q}_1=[s_1,x_1\textbf{i}+y_1\textbf{j}+z_1\textbf{k}]\\ \textbf{q}_2=[s_2,x_2\textbf{i}+y_2\textbf{j}+z_2\textbf{k}] q1=[s1,x1i+y1j+z1k]q2=[s2,x2i+y2j+z2k]
则点积结果为
q 1 q 2 = s 1 s 2 + x 1 x 2 + y 1 y 2 + z 1 z 2 \textbf{q}_1\textbf{q}_2=s_1s_2+x_1x_2+y_1y_2+z_1z_2 q1q2=s1s2+x1x2+y1y2+z1z2
利用四元数的点积,仿照向量的点积,我们可以定义两个四元数之间的夹角 θ \theta θ满足:
c o s θ = q 1 q 2 ∣ q 1 ∣ ∣ q 2 ∣ = s 1 s 2 + x 1 x 2 + y 1 y 2 + z 1 z 2 s 1 2 + x 1 2 + y 1 2 + z 1 2 s 2 2 + x 2 2 + y 2 2 + z 2 2 \begin{aligned} cos\theta&=\frac{\textbf{q}_1\textbf{q}_2}{|\textbf{q}_1||\textbf{q}_2|}\\ &=\frac{s_1s_2+x_1x_2+y_1y_2+z_1z_2}{\sqrt{s_1^2+x_1^2+y_1^2+z_1^2}\sqrt{s_2^2+x_2^2+y_2^2+z_2^2}} \end{aligned} cosθ=q1q2q1q2=s12+x12+y12+z12 s22+x22+y22+z22 s1s2+x1x2+y1y2+z1z2
对于单位四元数来说
c o s θ = s 1 s 2 + x 1 x 2 + y 1 y 2 + z 1 z 2 cos\theta=s_1s_2+x_1x_2+y_1y_2+z_1z_2 cosθ=s1s2+x1x2+y1y2+z1z2

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值