「 机器人 」扑翼飞行器的数据驱动建模核心方法

前言

        数据驱动建模可充分利用扑翼飞行器的已有运行数据,改进动力学模型与控制策略,并对未建模动态做出更精确的预测。在复杂的非线性飞行环境中,该方法能有效弥补传统解析建模的不足,具有较高的研究与应用价值。以下针对主要研究方向和实现步骤进行整理与阐述。


1. 数据驱动建模的目标

1.1 改进动力学模型

        • 弥补基于物理建模在非定常气动力、非线性执行器等方面的不足。

        • 利用数据驱动方法捕捉系统中的未知或难以解析的动态特性。

1.2 优化控制策略

        • 通过更精确的动力学模型,提升基于模型的控制性能。

        • 将数据驱动模型与强化学习等方法结合,生成更鲁棒的控制策略。

1.3 提升系统的适应性

        • 利用在线建模与预测功能,增强飞行器对环境变化与任务切换的自适应能力。

2. 数据驱动建模的核心方法

2.1 基于回归与插值的建模

(1)高斯过程回归(GPR)

        • 适用于具有非线性与未建模动态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Robot_Starscream

祝好!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值