【MMTracking有救了!】MMTracking环境安装这样装-2024.07.05更新

点评一下MMTracking

MMTracking作为目前很常用的跟踪框架,由于领域遇冷,更新停留在2023年,已经很久没有新的release;与此同时其所依赖的mmcv,mmdet一直保持更新,三个包之间的对应关系非常混乱,官方给出的安装教程似是而非可有可无,一次安装成功已然是种奢望!!!!

在此不废话,这里帮大家把三个包的对应关系找好,直接给出目前最新版MMTracking(v1.0.0rc1)的安装步骤,按着这个一步一步来保证一次成功!

安装步骤

创建环境(python 3.7)

conda create -n mmtracking python==3.7
conda create mmtracking

安装torch两件套

pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

安装Openmim来安装openmmlab套件

pip install -U openmim

直接安装MMCV和MMDetection(注意严格装下面两个版本)

mim install 'mmcv-full==1.6.2'
mim install 'mmdet==2.26.0'

安装MMTracking本体

git clone https://github.com/open-mmlab/mmtracking.git
cd mmtracking
pip install -r requirements/build.txt
pip install -e . -v

测试环境安装完成

python demo/demo_mot_vis.py configs/mot/deepsort/sort_faster-rcnn_fpn_4e_mot17-private.py --input demo/demo.mp4 --output mot.mp4

————————————————————————————————————————————————

参考

https://wowfool.com/2023/11/12/fix-problems-with-install-mmtracking/
(上面链接给的mmcv版本有问题,会导致缺了一个模块import不进来,改成本文的1.6.2后无误)

### 目标跟踪数据集 对于目标跟踪研究而言,多个公开可用的数据集提供了丰富的资源来评估和改进算法性能。常用的目标跟踪数据集包括但不限于: - **VOT (Visual Object Tracking)** 数据集系列:该系列每年更新一次,专注于视觉对象跟踪挑战赛,提供高质量标注的图像序列以及对应的基准测试平台[^1]。 - **MOTChallenge**:这是一个广泛使用的多目标跟踪评测平台,涵盖了城市街道场景下的行人跟踪任务,具有复杂的动态背景变化情况,适合用来验证多目标跟踪系统的鲁棒性和准确性[^2]。 - **LaSOT**:由中科院自动化所发布的大规模长期单目标跟踪数据集,旨在解决现有数据集中存在的短期依赖问题,通过引入长时间间隔内的样本对模型进行更全面地考验。 这些数据集通常可以通过官方网站获取下载链接并遵循相应指南完成安装配置过程。 ### 工具箱介绍与使用教程 #### MMTracking 安装与基础设置 MMTracking 是 OpenMMLab 推出的一个综合性的目标跟踪框架,支持多种类型的跟踪任务如单/多目标跟踪及视频物体检测等。为了方便开发者快速上手,官方文档给出了详细的环境搭建说明: ```bash git clone https://github.com/open-mmlab/mmtracking.git cd mmtracking pip install -r requirements/build.txt pip install -v -e . ``` 上述命令用于克隆仓库至本地,并按照需求安装必要的Python包以确保后续操作顺利执行[^3]。 #### 配置文件解析 在 `configs` 文件夹下可以找到不同任务所需的默认配置模板,比如针对 MOT 的训练流程可能涉及如下几个重要参数调整: - 模型结构定义 (`model`) - 训练超参设定 (`train_cfg`, `test_cfg`) - 数据管道构建 (`data_pipeline`) 具体来说,在处理多目标跟踪时,除了基本的目标检测组件外还需要加入 ReID 行人重识别模块以便更好地维持跨帧的身份一致性。 #### 运行实例脚本 最后,利用预设好的实验方案可以直接调用训练或推理接口来进行实际的任务演练: ```python from mmtrack.apis import inference_mot, init_model config_file = 'path/to/config/file.py' checkpoint_file = 'path/to/checkpoint/file.pth' # 初始化模型 model = init_model(config_file, checkpoint_file) # 执行前向传播获得预测结果 results = inference_mot(model, video_path) ``` 这段代码展示了如何加载指定配置项创建模型实例,并传入待测视频路径得到最终输出。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值