DL-based 医学图像数据预处理和训练的一般过程

一、Semi-supervised Medical Image Segmentation through Dual-task Consistency

Observing thatmulti/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks and/or data-level perturbation and then regularization for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised learning methods. Code is available at: HiLab-git/DTC

Pre-processing

In pre-processing, we use the soft tissue CT window range of [−125, 275] HU (Zhou et al. 2019a)1, and resample all images to an isotropic resolution of 1.0×1.0×1.0mm. Finally, we crop the images centering at the pancreas region based on the ground truth with enlarged margins (25 voxels) and normalize them as zero mean and unit variance.

Training

Implementation Details and Evaluation Metrics: We implement our framework in PyTorch (Paszke et al. 2019)2, using an NVIDIA 1080TI GPU. In this work, we use VNet (Milletari, Navab, and Ahmadi 2016)3 as the backbone for all experiments, and we implement dual-task VNet by adding a new regression layer at the end of the original VNet. The framework is trained by an SGD optimizer for 6000 iterations, with an initial learning rate (lr) 0.01 decayed by 0.1 every 2500 iterations. The batch size is 4, consisting of 2 labeled images and 2 unlabeled images.

To avoid over-fitting, we use the standard on-the-fly data augmentation methods during training stage (Yu et al. 2019)4.


  1. Prior-aware neural network for partially-supervised multi-organ segmentation. In ICCV ↩︎

  2. Pytorch: An imperative style, high-performance deep learning library. In NeurIPS ↩︎

  3. V -net: Fully convolutional neural networks for volumetric medical image segmentation. In 3DV, 565–571. IEEE. ↩︎

  4. Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In MICCAI ↩︎

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Skr.B

WUHOOO~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值