Realsense(五)多人脸实时检测及跟踪代码

本文提供了博主根据Intel Realsense SDK和官方例程编写的简化版多人脸检测及跟踪代码,简化了官方例程的复杂性。在研究过程中,博主发现Realsense SDK参考资料有限,对比Kinect,虽然Realsense功能强大且体积小巧,但相关开发者资源较少。文章详细介绍了代码实现过程中的困惑和理解,强调了关键函数如ApplyChanges的作用,并指出正确的人脸模块使能和追踪配置时机。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.代码声明

     下面的代码是博主参考了Intel realsense官方SDK和官方例程后写的一段较为简单的代码,实现了简单的多人脸实时检测及跟踪功能。官方的人脸检测例程功能较多,但代码量很大,阅读起来也较困难,所以博主写了一段较为精简的人脸检测代码。


二.具体代码

#include <pxcsensemanager.h>  
#include <pxcsession.h>  
#include "util_render.h"  
#include <iostream>
#include <string>
#include <stdio.h>  
#include <opencv2\opencv.hpp>  
#include <windows.h>

#define WIDTH 640  
#define HEIGHT 480  

using namespace cv;
using namespace std;

void DrawRectangle(Mat &img, Rect box)
{
	rectangle(img, box, Scalar(255, 255, 0),2);
}

int main(int argc, char** argv)
{
	PXCSenseManager *psm = 0;
	psm = PXCSenseManager::CreateInstance();
	if (!psm)
	{
		wprintf_s(L"Unabel to create the PXCSenseManager\n");
		return 1;
	}

	//使能人脸跟踪
	psm->EnableFace();

	// 初始化管道
	psm->Init();

	//得到一个人脸模块的实例
	PXCFaceModule *faceModule = psm->Qu
### Realsense 摄像头检测与追踪解决方案 #### 硬件基础支持 Realsense摄像头具备深度感知能力,能够捕捉三维空间中的物体位置信息。对于人场景而言,该特性尤为重要,因为它不仅提供了二维图像数据,还增加了距离维度的数据,有助于区分不同个体的位置关系[^1]。 #### 软件算法优化 针对检测跟踪的任务需求,Intel官方及其社区开发者们已经开发了一系列专门用于处理此类问题的软件包和工具集。这些资源通常集成先进的计算机视觉技术和机器学习模型来提升准确性并减少误报率。例如,在某些应用案例中提到过利用卷积神经网络(CNNs)来进行实时的人体姿态估计工作,这可以作为构建高效可靠的人追踪系统的坚实基础[^2]。 #### 实际应用场景实例 myShape公司的智能健身私教产品展示了如何将3D动作捕捉技术应用于实际环境中去实现精准的动作分析与指导服务。虽然这不是直接关于Realsense的例子,但它证明了通过高质量的空间感知设备配合优秀的算法设计确实可以在复杂环境下完成有效的人员监测任务[^3]。 ```python import pyrealsense2 as rs import numpy as np import cv2 pipeline = rs.pipeline() config = rs.config() # Configure streams for multiple people tracking config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30) config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30) profile = pipeline.start(config) try: while True: frames = pipeline.wait_for_frames() depth_frame = frames.get_depth_frame() color_frame = frames.get_color_frame() if not depth_frame or not color_frame: continue # Convert images to numpy arrays depth_image = np.asanyarray(depth_frame.get_data()) color_image = np.asanyarray(color_frame.get_data()) finally: pipeline.stop() ```
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值