复现 ray tracing in one weekend

写在前面的话:由于自己是非科班小白,很多问题的理解都是不充分的,但是非常希望和欢迎有这方向的朋友与我讨论有关问题。感谢感谢!

这篇帖子用来记录自己在复现光线追踪中遇到的问题以及思考。

首先是最简单的“helloworld”

//main.cpp
#include <iostream>

int main() {

    // Image

    int image_width = 256;
    int image_height = 256;

    // Render

    std::cout << "P3\n" << image_width << ' ' << image_height << "\n255\n";

    for (int j = 0; j < image_height; ++j) {
        for (int i = 0; i < image_width; ++i) {
            auto r = double(i) / (image_width-1);
            auto g = double(j) / (image_height-1);
            auto b = 0;

            int ir = static_cast<int>(255.999 * r);
            int ig = static_cast<int>(255.999 * g);
            int ib = static_cast<int>(255.999 * b);

            std::cout << ir << ' ' << ig << ' ' << ib << '\n';
        }
    }
}

然后生成的exe文件通过

inOneWeekend.exe > image.ppm

来获得一个ppm文件,可以直接看到一副五颜六色的图。

由于需要很多关于向量的计算,所以我们自己定义一个vec3.h的头文件,里面放我们对于一个向量的定义以及一些简单向量的点乘

//vec3.h
#ifndef VEC3_H
#define VEC3_H

#include <cmath>
#include <iostream>

using std::sqrt;

class vec3 {
public:
    double e[3];

    vec3() : e{ 0,0,0 } {}//构造函数 初始化
    vec3(double e0, double e1, double e2) : e{ e0, e1, e2 } {}//构造函数重载,由输入定义e

    double x() const { return e[0]; }//接口,获得e的三个数
    double y() const { return e[1]; }
    double z() const { return e[2]; }

    vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }//对-做重载处理
    double operator[](int i) const { return e[i]; }//【】可以通过vec3【】得到e的数const,不可修改
    double& operator[](int i) { return e[i]; }//通过取地址形式 可以修改e

    vec3& operator+=(const vec3& v) {//+=重载,让两个vec的对应e相加
        e[0] += v.e[0];
        e[1] += v.e[1];
        e[2] += v.e[2];
        return *this;
    }

    vec3& operator*=(double t) {//*重载
        e[0] *= t;
        e[1] *= t;
        e[2] *= t;
        return *this;
    }

    vec3& operator/=(double t) {
        return *this *= 1 / t;
    }

    double length() const {
        return sqrt(length_squared());
    }

    double length_squared() const {
        return e[0] * e[0] + e[1] * e[1] + e[2] * e[2];
    }
};

// point3 is just an alias for vec3, but useful for geometric clarity in the code.
using point3 = vec3;//point是vec的别名


// Vector Utility Functions

inline std::ostream& operator<<(std::ostream& out, const vec3& v) {
    return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}

inline vec3 operator+(const vec3& u, const vec3& v) {
    return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}

inline vec3 operator-(const vec3& u, const vec3& v) {
    return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}

inline vec3 operator*(const vec3& u, const vec3& v) {
    return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}

inline vec3 operator*(double t, const vec3& v) {
    return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}

inline vec3 operator*(const vec3& v, double t) {
    return t * v;
}

inline vec3 operator/(vec3 v, double t) {
    return (1 / t) * v;
}

inline double dot(const vec3& u, const vec3& v) {//点乘
    return u.e[0] * v.e[0]
        + u.e[1] * v.e[1]
        + u.e[2] * v.e[2];
}

inline vec3 cross(const vec3& u, const vec3& v) {//叉乘
    return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
        u.e[2] * v.e[0] - u.e[0] * v.e[2],
        u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}

inline vec3 unit_vector(vec3 v) {//标准化
    return v / v.length();
}

#endif

另外,可以看到原来的main中有输出颜色的语句,我们把这部分抽出来放到color.h中并修改main.cpp。

//color.h
#ifndef COLOR_H
#define COLOR_H

#include "vec3.h"

#include <iostream>
  //在这个函数中,将获得的颜色写入输出流
using color = vec3;

void write_color(std::ostream& out, color pixel_color) {//pixel_color中储存颜色分量,pixel中的数都是0-1的
    // Write the translated [0,255] value of each color component.
    out << static_cast<int>(255.999 * pixel_color.x()) << ' '
        << static_cast<int>(255.999 * pixel_color.y()) << ' '
        << static_cast<int>(255.999 * pixel_color.z()) << '\n';
}

#endif
//main.cpp
#include "color.h"
#include "vec3.h"

#include <iostream>

int main() {

    // Image

    int image_width = 256;
    int image_height = 256;

    // Render

    std::cout << "P3\n" << image_width << ' ' << image_height << "\n255\n";

    for (int j = 0; j < image_height; ++j) {
        std::clog << "\rScanlines remaining: " << (image_height - j) << ' ' << std::flush;
        for (int i = 0; i < image_width; ++i) {
            auto pixel_color = color(double(i)/(image_width-1), double(j)/(image_height-1), 0);
            write_color(std::cout, pixel_color);
        }
    }

    std::clog << "\rDone.                 \n";
}

---------------------------------------------------------------------------------------------------------------------------------

ok,以上都是准备工作,现在开始进入正题。

光线ray:光线是什么,是从一个点向一个方向发出的射线,我们需要的是一个出发点,以及一个标准的射线方向(在之后的方向计算中,是通过camera到视口的像素点来决定这一条光线的方向)

把ray抽象成一个类。

//ray.h
#ifndef RAY_H
#define RAY_H

#include "vec3.h"
//ray函数中有两个参数,出发点orig和方向向量dir,其中at(t)=orig+t*dir,
class ray {
public:
        ray() {}

        ray(const point3& origin, const vec3& direc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值