前言:什么是广义特征值问题?
【广义特征值问题】设 A = ( a i j ) ∈ R n × n A=(a_{ij})\in \mathbb{R}^{n\times n} A=(aij)∈Rn×n是 n n n阶
实对称
矩阵, B = ( b i j ) ∈ R n × n B=(b_{ij})\in \mathbb{R}^{n\times n} B=(bij)∈Rn×n是 n n n阶实对称正定
矩阵,使下式 A x = λ B x \mathbf{Ax=\lambda Bx} Ax=λBx 有非零解向量 x ∈ R n x\in \mathbb{R}^{n} x∈Rn,则称 λ \lambda λ是矩阵 A A A相对于矩阵 B B B的特征值,且 x x x是属于 λ \lambda λ的特征向量。该问题常见于振动理论。
我们可以发现
- 当
B
≠
I
B\not=I
B=I时,该问题是
广义特征值问题
- 当
B
=
I
B=I
B=I时,该问题是
普通特征值问题
思路:如何求解广义特征值问题?
在想办法求解广义特征值问题前,我们需要先知道我们会做什么问题?首先,我们会做形如 A x = λ x Ax=\lambda x Ax=λx的普通特征值问题,如使用特征方程 det ( λ I − A ) = 0 \det(\lambda I-A)=0 det(λI−A)=0求解特征值,使用 ( A − λ I ) x = 0 (A-\lambda I)x=0 (A−λI)x=0通过求其零空间得到特征向量 x x x,对于实对称矩阵 A A A,我们还能得到任意特征值 λ i ≥ 0 \lambda_i\ge 0 λi≥0的特性,以及通过瑞利商理论得到当 x H x = I x^Hx=I xHx=I时有 λ = x H A x \lambda=x^HAx λ=xHAx。
因此,面对一个和普通特征值相关的新问题,我们可以尝试将不会做的问题转化为会做的问题。因此我们常将广义特征值问题转化为普通特征值问题,然后再利用普通特征值已成熟的求解方法,从而得到广义特征值问题的解向量。
本文就广义特征值问题做以梳理,完整定理证明请参考西工大的《矩阵论》[1]。

一、广义特征值问题的等价形式
第1种等价形式
我们将等式两端分别左乘 B − 1 B^{-1} B−1得到如下式子,可见虽然 B − 1 , A B^{-1},A B−1,A都是对称矩阵,但 B − 1 A B^{-1}A B−1A一般不再是对称矩阵
B − 1 A x = λ x B^{-1}Ax=\lambda x B−1Ax=λx
第2种等价形式
我们将矩阵
B
B
B进行
Cholesky
\text{Cholesky}
Cholesky分解(平方根分解)得到下式 (其中
G
G
G是下三角矩阵)
B
=
G
G
T
B=GG^T
B=GGT
因此有
A
x
=
λ
G
G
T
x
⇒
G
−
1
A
x
=
λ
G
T
x
⇒
G
−
1
A
[
(
G
T
)
−
1
G
T
]
x
=
λ
G
T
x
⇒
[
G
−
1
A
(
G
−
1
)
T
]
(
G
T
x
)
=
λ
(
G
T
x
)
\begin{aligned} &Ax=\lambda GG^Tx\\ \Rightarrow & G^{-1}Ax =\lambda G^Tx \\ \Rightarrow & G^{-1}A[(G^T)^{-1}G^T]x =\lambda G^Tx \\ \Rightarrow & [G^{-1}A(G^{-1})^T](G^Tx) =\lambda (G^Tx) \\ \end{aligned}
⇒⇒⇒Ax=λGGTxG−1Ax=λGTxG−1A[(GT)−1GT]x=λGTx[G−1A(G−1)T](GTx)=λ(GTx)
我们令
{
S
=
G
−
1
A
(
G
−
1
)
T
y
=
G
T
x
\begin{cases} S=G^{-1}A(G^{-1})^T \\ y=G^Tx \end{cases}
{S=G−1A(G−1)Ty=GTx
其中
S
S
S是实对称矩阵,我们将
A
A
A的广义特征值问题转化为如下矩阵
S
S
S的普通特征值问题
S
y
=
λ
y
Sy=\lambda y
Sy=λy
二、特征向量的正交性(共轭性)
由于第2个等价形式的矩阵
S
S
S是实对称矩阵,因此其特征值均是实数,且存在完备的标准正交特征向量系满足
y
i
T
y
j
=
{
0
,
i
≠
j
1
,
i
=
j
y_i^Ty_j = \begin{cases} 0,\; i\not= j \\ 1,\; i= j \end{cases}
yiTyj={0,i=j1,i=j
由于
y
i
T
y
j
=
(
G
T
x
i
)
T
G
T
x
i
=
x
i
T
G
G
T
x
i
=
x
i
T
B
x
i
y_i^Ty_j =(G^Tx_i)^TG^Tx_i=x_i^TGG^Tx_i=x_i^TBx_i
yiTyj=(GTxi)TGTxi=xiTGGTxi=xiTBxi
因此,有
x
=
(
x
1
,
.
.
.
,
x
n
)
T
x=(x_1,...,x_n)^T
x=(x1,...,xn)T满足下式,其中
x
x
x称为按
B
B
B标准正交化向量系
,下式称为
B
B
B正交条件
x
i
T
B
x
i
=
{
0
,
i
≠
j
1
,
i
=
j
x_i^TBx_i = \begin{cases} 0,\; i\not= j \\ 1,\; i= j \end{cases}
xiTBxi={0,i=j1,i=j
所以,按
B
B
B标准正交化向量系
x
x
x具有如下重要性质
- x i ≠ 0 ( i = 1 , 2 , . . . , n ) x_i\not= 0 \; (i=1,2,...,n) xi=0(i=1,2,...,n)
- x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn线性无关
参考文献
程云鹏, 凯院, 仲. 矩阵论[M]. 西北工业大学出版社, 2006.