摘要
本节详细讲解了质数与合数的定义及其重要性。首先,介绍了质数与合数的概念,即质数是只能被一和它本身整除的自然数,而合数则是除了一和它本身外还有其他因数的自然数。接着,通过实际案例,如足球赛分组问题,说明了为何需要进一步将数字分类为质数与合数。视频还讨论了如何判定一个数是质数还是合数,指出这需要一定的经验与熟练度。最后,提及了哥德巴赫猜想这一数学难题,强调了理解质数与合数对于探索数学领域的重要性。
质数与合数的定义
1.质数:除了一和它本身以外,不再有其他因数的自然数。
2.合数:除了一和它本身以外,还有其他因数的自然数。
3.零和一既不是质数也不是合数。
多维度的分类思想
1.分类不是一种单一的方法,而是多种方法的结合。
2.分类的依据根据处理问题的不同而变化。
3.多维度的分类思想在生活和数学中广泛应用。
质数与合数的应用
1.质数和合数的分类解决了更多维度的问题,如三人分组或四人分组。
2.足球赛、篮球赛或乒乓球赛中的队伍分组。
3.世界杯比赛中队伍的分组。
质数与合数的判断方法
1.质数:除了一和它本身以外,没有其他因数。
2.合数:除了一和它本身以外,有其他因数。
3.判断一个数是质数还是合数需要试探和其他因数。
100以内的质数表
1.质数表包含一到100之间的所有质数。
2.建议通过判定而非背诵来掌握质数表。
3.判定过程有助于理解和记忆质数。
哥德巴赫猜想
1.哥德巴赫猜想:任何一个大于二的偶数都可以写成两个质数之和。
2.猜想虽然未完全证明,但通过质数和合数的定义可以理解其含义。
3.尝试举例验证哥德巴赫猜想,如20以内的偶数。
上节课我们讲了奇数和偶数,对吧?这节课呢?我们来进一步啊,讲讲质数和合数的定义啊,不会讲的很难讲,一个基本的定义就可以。呃,首先第一个问题啊,首要问题都分成奇数和偶数了,上节课我们讲啊,分了一三五七二四六八对吧?那为什么还要分质数和合数呢?
为什么就多此一举?还要再多一种分法呢?这是一个比较底层的问题啊也,所以说我们首先探讨一下这个多维度的分类思想,为什么要这么干?其实我们不只在数学里这么干啊,我们在生活里的方方面面都在这么干,举个案例啊。体会一下多维度的分类,我们通常对一个事物进行分类,不会用一种方法进行分类的,你看这个。这边有一个家庭,对吧?我们可以怎么分啊?
是不是可以按照男女来分啊?如果按男女来分,就是这么分的。给呃爸爸和儿子是男男男生,然后呢,妈妈和女儿是女生,对吧?这显然是没有问题的。但是啊,我们绝对不会只用这一种分类。有时候呢,还会用年龄来分类,比如说大人和小孩儿,他是怎么分的?横着分上面呢,
是大下面呢,是两个小孩儿,所以说这种分类法也是对的。那你可能会问为什么用两种分类法呢?因为在处理不同问题的时候,因为它们性质的不同,我们采取不同的分类法会。呃,它会它会更方便一些,举个例子啊,如果我现在要去上厕所。那应该按照什么来分呢?哼,如果上厕所的话,那肯定是妈妈带女儿去,
对吧?爸爸带带小那个小男生去。所以说应该是按照性别男女来分的。但是不是所有事情都按男女来分的,比如说现在我要进一个动物园去买票。票是不是分成成人票和儿童票啊?那这个时候就不是按照男女来分了,不管是你男男的还是女的都要买票啊,但是这个时候按年龄分有什么好处呢?成年人他是要买成人票的,比如说爸爸和妈妈。是要买成人票的。但是小朋友因为他比较小嘛,就会有半价票,对吧?
比如说一米四以下,那这两个小朋友呢?就是半价票。你会发现现在处理这个问题的时候,是不是就是按照什么?对按照年龄来分了,所以不同的问题啊呃,实际过实际在处理的时候,其实呃不能按照一种分类法强行的给它处理掉。我所以说这个时候多维度的分类啊,就会非常自然的就出现。对于数字来讲也是一样,我们分奇数和偶数啊,是为了解决什么问题的,还记得吧?
我们上节课讲了。是为了解决是否两人可以平分的问题。对吧,那两人平分问题确实啊,你就可以用基础和偶数来解决了,这个没问题,但是是不是所有问题都是两人平分问题啊?那显然不是啊,比如说我可以三人分啊,或者四人分啊,或者类似其他的问题啊,那这个时候呢,质数和合数的思想就会被提升提升。提上日程来了,为什么?
为什么这个是跟这个是跟质数合数有什么关系呢?因为大家现在还不知道什么叫质数和合数啊。所以我首先还是按照我们的一贯方法给大家举一个生活的案例,你先理解这件事情到底要干什么?来看一个案例啊。不知道大家在学校里有没有组织过什么足球赛啊,篮球赛啊,或者说什么乒乓球赛啊,有没