BestCoder Round #85 前三题

第一题:
sum
sum Accepts: 640 Submissions: 1744
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
问题描述
给定一个数列,求是否存在连续子列和为m的倍数,存在输出YES,否则输出NO
输入描述
输入文件的第一行有一个正整数T(1≤T≤10),表示数据组数。
接下去有T组数据,每组数据的第一行有两个正整数n,m ( 1≤n≤100000 , 1≤m≤5000).
第二行有n个正整数x (1≤x≤100)表示这个数列。
输出描述
输出T行,每行一个YES或NO。
输入样例
2
3 3
1 2 3
5 7
6 6 6 6 6
输出样例
YES
NO

官方题解:
预处理前缀和,一旦有两个数模m的值相同,说明中间一部分连续子列可以组成m的倍数。 另外,利用抽屉原理,我们可以得到,一旦n大于等于m,答案一定是YES 复杂度 O(n)

分析:
首先用记录所有的前缀和sum[i](a[1]+..+a[i])。所以a[i]+…+a[j]=sum[j]-sum[i-1]。如果a[i]+..+a[j]是m的倍数的话,那么sum[i-1]%m一定等于sum[j]%m。所以我们只能判断在所有前缀和中是否存在sum[i],sum[j]模m后相等即可。

AC代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#define maxn 100005

using namespace std;

int T,n,m,a[maxn],sum[maxn];
bool vis[5005];

int main()
{
    scanf("%d",&T);
    while (T--)
    {
        memset(vis,0,sizeof(vis));
        memset(a,0,sizeof(a));
        memset(sum,0,sizeof(sum));
        scanf("%d%d",&n,&m);
        bool f=0;
        for (int i=1;i<=n;i++) scanf("%d",&a[i]);
        for (int i=1;i<=n;i++)
        {
            sum[i]=a[i]+sum[i-1];
            sum[i]%=m;
            if (sum[i]==0)
            {
                f=1;
                break;
            }
        }
        if (f)
        {
            printf("YES\n");
            continue ;
        }
        for (int i=1;i<=n;i++)
            if (!vis[sum[i]]) vis[sum[i]]=1;
            else
        {
            f=1;
            break;
        }
        if (f) printf("YES\n");
        else printf("NO\n");
    }
    return 0;
}

第二题:
domino
Accept: 0 Submit: 0
Time Limit: 2000/1000 MS (Java/Others) Memory Limit : 131072/131072 K (Java/Others)

小白在玩一个游戏。桌子上有n张多米诺骨牌排成一列。它有k次机会,每次可以选一个还没有倒的骨牌,向左或者向右推倒。每个骨
牌倒下的时候,若碰到了未倒下的骨牌,可以把它推倒。小白现在可以随意设置骨牌的高度,但是骨牌高度为整数,且至少为1,并且
小白希望在能够推倒所有骨牌的前提下,使所有骨牌高度的和最小。
Input:
第一行输入一个整数T(1≤T≤10)
每组数据有两行
第一行有两个整数n和k,分别表示骨牌张数和机会次数。(2≤k,n≤100000)
第二行有n-1个整数,分别表示相邻骨牌的距离d,1≤d≤100000
Output:
对于每组数据,输出一行,最小的高度和

输入样例
1
4 2
2 3 4
输出样例
9

官方题解:
首先骨牌只要考虑都往右推,其次能带倒骨牌的前提是高度大于等于距离+1。所以如果推一次,那么就是骨牌高度=离下一块骨牌距离+1. 把第一块左边距离设为无穷大,能推nk次,那么就是找nk块左边距离最大的向右推倒即可,所以只需要排序找到前nk-1大的距离。 有个小trick,推的次数可能大于骨牌数量 复杂度 O(nlogn)

分析:
一个骨牌想撞到旁边的骨牌,那么他的高度最小一定是它们之间的距离+1。(左推和右推一样,所以我们只需要考虑左推)。如果只有一个次机会推骨牌,那么第i个骨牌一定是它离右边的骨牌的距离+1,最后一个骨牌高度为1。现在有k次机会,那么我们可以把这一列骨牌分为k段,进行上述处理。那么我们怎么分段呢?分段其实就是可以不算一段距离,所以我们只要不算距离最大的k-1个距离即可。所以我们只需要sort()一次就可以了。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn=100010;
int a[maxn];

int main()
{
    int t,n,k;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&k);
        for(int i=0;i<n-1;i++)
        {
            scanf("%d",&a[i]);
        }
        if(k>=n)
        {
            printf("%I64d\n",n);
            continue;
        }
        long long ans=n;
        sort(a,a+n-1);
        for(int i=0;i<n-k;i++)
            ans+=a[i];
        printf("%I64d\n",ans);
    }
    return 0;
}

第三题:
abs
Accepts: 136 Submissions: 927
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)

问题描述
给定一个数x,求正整数y≥2,使得满足以下条件:
1.y-x的绝对值最小
2.y的质因数分解式中每个质因数均恰好出现2次。
输入描述
第一行输入一个整数T ( 1≤T≤50)
每组数据有一行,一个整数x ( 1≤x≤10^18)

输出描述
对于每组数据,输出一行y-x的最小绝对值
输入样例
5
1112
4290
8716
9957
9095
输出样例
23
65
67
244
70

官方题解:
由于y质因数分解式中每个质因数均出现2次,那么y是一个完全平方数,设y=z*z,题目可转换成求z,使得每个质因数出现1次. 我们可以暴力枚举z,检查z是否符合要求,显然当z是质数是符合要求,由素数定理可以得,z的枚举量在logn级别 复杂度 这里写图片描述

分析:
观察条件2
因为每个质因数恰好出现2次,所以y必定是一个平方数
假设y=z*z
那么z必定是一个由不同质数构成,且每种质数仅有一个的10^9以内的整数
思来想去,貌似没有什么特别优化的做法,那就暴力来一发
对于一个10^9范围内的数,若它在这里写图片描述之内没有找到因子的话,那这个数必定是一个质数
显然,z为质数时也是满足的
那么我们就从sqrt(x)开始,分别向下,向上枚举,直到找到符合题意的z,哪个|y-x|小就取哪个
特判x<4的情况,因为题目规定y>=2

AC代码:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<queue>
#include<stack>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<cmath>
#include<complex>
#include<string>
#include<algorithm>
#include<iostream>
#define eps 1e-8
#define LL long long
#define bitnum(a) __builtin_popcount(a)
using namespace std;


const int N = 50005;

int prime[N],p;
bool v[N];

void get_prime()
{
    memset(v,false,sizeof(v));
    p=0;
    for(int i=2;i<N;i++)
    {
        if(!v[i])
        {
            prime[p++]=i;
            for(int j=i+i;j<N;j+=i)
                v[j]=true;
        }
    }
}

bool judge(__int64 x)
{
    int k;
    for(int i=0;i<p;i++)
    {
        k=0;
        while(x%prime[i]==0)
        {
            k++;
            x/=prime[i];
            if(k>=2)
                return false;
        }
    }
    return true;
}

int main()
{
    get_prime();
    int t;
    __int64 x,k,ans;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%I64d",&x);
        if(x<4)
        {
            printf("%I64d\n",4-x);
            continue;
        }
        k=(__int64)sqrt(1.0*x);
        int j;
        for(j=0;;j--)
            if(judge(k+j)) break;
        ans=abs(x-(k+j)*(k+j));
        for(j=1;;j++)
            if(judge(k+j)) break;
        ans=min(ans,abs(x-(k+j)*(k+j)));
        printf("%I64d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值