从零学习自动驾驶Lattice规划算法(下) 轨迹采样 轨迹评估 碰撞检测
包含matlab代码实现和cpp代码实现,方便对照学习。
cpp代码用vs2019编译 依赖qt5.15做可视化
更新:
1 优化绘图
2 增加轨迹预测模块
3 增加从mat文件加载场景的功能,方便场景自定义
YID:99120693209878081
autorobot
从零学习自动驾驶Lattice规划算法(下) 轨迹采样 轨迹评估 碰撞检测
在自动驾驶领域,路径规划是至关重要的一环。Lattice规划算法是一种常用且高效的路径规划算法,本文将介绍该算法的轨迹采样、轨迹评估和碰撞检测三个关键步骤,并提供了MATLAB代码实现和C++代码实现,方便读者进行学习和对照。
-
轨迹采样
轨迹采样是Lattice规划算法的第一步,它的主要目的是生成候选轨迹,用于后续的评估和选择。在轨迹采样过程中,我们需要考虑到车辆的动力学约束、路径的曲率和速度等因素。为了解决这个问题,我们可以使用MATLAB来实现一个轨迹采样模块。通过设置不同的采样参数,我们可以生成多样化的轨迹候选集。在C++代码实现中,我们可以使用Qt5.15来实现可视化,让轨迹采样过程更加直观。 -
轨迹评估
在轨迹采样之后,我们需要对生成的候选轨迹进行评估。评估的指标可以包括轨迹的安全
相关的代码,程序地址如下:http://fansik.cn/693209878081.html