《从零学习自动驾驶Lattice规划算法(下):轨迹采样、评估与碰撞检测,附带Matlab和C++代码实现,兼容VS2019编译与Qt5.15可视化》,从零学习自动驾驶Lattice规划算法(下) 轨

从零学习自动驾驶Lattice规划算法(下) 轨迹采样 轨迹评估 碰撞检测
包含matlab代码实现和cpp代码实现,方便对照学习。
cpp代码用vs2019编译 依赖qt5.15做可视化
更新:
1 优化绘图
2 增加轨迹预测模块
3 增加从mat文件加载场景的功能,方便场景自定义

YID:99120693209878081

autorobot


从零学习自动驾驶Lattice规划算法(下) 轨迹采样 轨迹评估 碰撞检测

在自动驾驶领域,路径规划是至关重要的一环。Lattice规划算法是一种常用且高效的路径规划算法,本文将介绍该算法的轨迹采样、轨迹评估和碰撞检测三个关键步骤,并提供了MATLAB代码实现和C++代码实现,方便读者进行学习和对照。

  1. 轨迹采样
    轨迹采样是Lattice规划算法的第一步,它的主要目的是生成候选轨迹,用于后续的评估和选择。在轨迹采样过程中,我们需要考虑到车辆的动力学约束、路径的曲率和速度等因素。为了解决这个问题,我们可以使用MATLAB来实现一个轨迹采样模块。通过设置不同的采样参数,我们可以生成多样化的轨迹候选集。在C++代码实现中,我们可以使用Qt5.15来实现可视化,让轨迹采样过程更加直观。

  2. 轨迹评估
    在轨迹采样之后,我们需要对生成的候选轨迹进行评估。评估的指标可以包括轨迹的安全

相关的代码,程序地址如下:http://fansik.cn/693209878081.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值