行为树

行为树(Behavior Tree),有4大类型的Node:

(1) Composites Node  组合节点,包括经典的:Sequence,Selector,Parallel

 * Selector Node
    当执行本类型Node时,它将从begin到end迭代执行自己的Child Node:
    如遇到一个Child Node执行后返回True,那停止迭代,
    本Node向自己的Parent Node也返回True;否则所有Child Node都返回False,
    那本Node向自己的Parent Node返回False。
    
  * Sequence Node
    当执行本类型Node时,它将从begin到end迭代执行自己的Child Node:
    如遇到一个Child Node执行后返回False,那停止迭代,
    本Node向自己的Parent Node也返回False;否则所有Child Node都返回True,
    那本Node向自己的Parent Node返回True。
  
  * Parallel Node
    并发执行它的所有Child Node。
    而向Parent Node返回的值和Parallel Node所采取的具体策略相关:
Parallel Selector Node: 有一个子节点True返回True,否则返回False。
Parallel Sequence Node: 有一个子节点False返回False,否则返回True。
Parallel Fall On All Node: 所有子节点False才返回False,否则返回True。
Parallel Succeed On All Node: 所有子节点True才返回True,否则返回False。
Parallel Hybird Node: 指定数量的子节点返回True或False后,才决定结果。

 

    Parallel Node提供了并发,提高性能。
    不需要像Selector/Sequence那样预判哪个Child Node应摆前,哪个应摆后,
    常见情况是:
    (1)用于并行多棵Action子树。
    (2)在Parallel Node下挂一棵子树,并挂上多个Condition Node,
       以提供实时性和性能。
    Parallel Node增加性能和方便性的同时,也增加实现和维护复杂度。


  PS:上面的Selector/Sequence准确来说是Liner Selector/Liner Sequence。
  AI术语中称为strictly-order:按既定先后顺序迭代。
  
  Selector和Sequence可以进一步提供非线性迭代的加权随机变种。
  Weight Random Selector提供每次执行不同的First True Child Node的可能。
  Weight Random Sequence则提供每次不同的迭代顺序。
  AI术语中称为partial-order,能使AI避免总出现可预期的结果。

(2) Decorator Node 装饰节点,顾名思义,就是为仅有的一个子节点额外添加一些功能,比如让子task一直运行直到其返回某个运行状态值,或者将task的返回值取反等等

(3) Actions Node     行为节点,行为节点是真正做事的节点,其为叶节点。Behavior Designer插件中自带了不少Action节点,如果不够用,也可以编写自己的Action。一般来说都要编写自己的Action,除非用户是一个不懂脚本的美术或者策划,只想简单地控制一些物件的属性。

(4) Conditinals Node 条件节点 ,用于判断某条件是否成立。目前看来,是Behavior Designer为了贯彻职责单一的原则,将判断专门作为一个节点独立处理,比如判断某目标是否在视野内,其实在攻击的Action里面也可以写,但是这样Action就不单一了,不利于视野判断处理的复用。一般条件节点出现在Sequence控制节点中,其后紧跟条件成立后的Action节点。

 

  整棵行为树中,只有Condition Node和Action Node才能成为Leaf Node,而也只有Leaf Node才是需要特别定制的Node;Composite Node和Decorator Node均用于控制行为树中的决策走向。(所以有些资料中也统称Condition Node和ActionNode为Behavior Node,而Composite Node和Decorator Node为Decider Node。)

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页