种群数量变化模型logistic模型的种群数量函数

对于logistic模型,我们经常见到的形式是这样子的 d N d t = r ∗ N ∗ ( 1 − N K ) \frac{dN}{dt}=r*N*(1-\frac{N}{K}) dtdN=rN(1KN)
其中N为种群生物数量(或密度),r为固定增长率,K为种群环境容纳量
我们可以求它的原函数:
先分离变量 1 r ∗ N ∗ ( 1 − N K ) ∗ d N = 1 d t \frac{1}{r*N*(1-\frac{N}{K})}*dN=1 dt rN(1KN)1dN=1dt
两边积分 ∫ 1 r ∗ N ∗ ( 1 − N K ) ∗ d N = ∫ 1 d t \int\frac{1}{r*N*(1-\frac{N}{K})}*dN=\int 1 dt rN(1KN)1dN=1dt
整理一下 1 r ∫ K N ∗ ( K − N ) d N = ∫ 1 d t \frac{1}{r}\int \frac{K}{N*(K-N)}dN=\int 1 dt r1N(KN)KdN=1dt
拆开分式 1 r ∫ 1 N + 1 K − N d N = ∫ 1 d t \frac{1}{r}\int \frac{1}{N}+\frac{1}{K-N}dN=\int 1 dt r1N1+KN1dN=1dt
计算积分 1 r ( l n N − l n ( K − N ) + C 1 ) = t + C 2 \frac{1}{r} \left(ln{N}-ln(K-N)+C_1 \right)=t+C_2 r1(lnNln(KN)+C1)=t+C2
整理一下 N K − N = e r t + r C 2 − C 1 \frac{N}{K-N}=e^{rt+rC_2-C_1} KNN=ert+rC2C1
C = r C 2 − C 1 C=rC_2-C_1 C=rC2C1
N K − N = e r t + C \frac{N}{K-N}=e^{rt+C} KNN=ert+C
N = K e r t + C 1 + e r t + C , 也 即 N = K 1 + e − r t − C N=\frac{Ke^{rt+C}}{1+e^{rt+C}},也即N=\frac{K}{1+e^{-rt-C}} N=1+ert+CKert+C,N=1+ertCK
若我们假设 t = 0 t=0 t=0时刻 N = N 0 N=N_0 N=N0
则有 N 0 = K 1 + e − C N_0=\frac{K}{1+e^{-C}} N0=1+eCK
整理得 C = l n ( N 0 K − N 0 ) C=ln(\frac{N_0}{K-N_0}) C=ln(KN0N0)
于是结论有 N = K 1 + e − r t − C ( N t = 0 = N 0 , C = l n ( N 0 K − N 0 ) ) N=\frac{K}{1+e^{-rt-C}}\quad(N_{t=0}=N_0,C=ln(\frac{N_0}{K-N_0})) N=1+ertCK(Nt=0=N0,C=ln(KN0N0))
函数图像如下

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值