对于logistic模型,我们经常见到的形式是这样子的
d
N
d
t
=
r
∗
N
∗
(
1
−
N
K
)
\frac{dN}{dt}=r*N*(1-\frac{N}{K})
dtdN=r∗N∗(1−KN)
其中N为种群生物数量(或密度),r为固定增长率,K为种群环境容纳量
我们可以求它的原函数:
先分离变量
1
r
∗
N
∗
(
1
−
N
K
)
∗
d
N
=
1
d
t
\frac{1}{r*N*(1-\frac{N}{K})}*dN=1 dt
r∗N∗(1−KN)1∗dN=1dt
两边积分
∫
1
r
∗
N
∗
(
1
−
N
K
)
∗
d
N
=
∫
1
d
t
\int\frac{1}{r*N*(1-\frac{N}{K})}*dN=\int 1 dt
∫r∗N∗(1−KN)1∗dN=∫1dt
整理一下
1
r
∫
K
N
∗
(
K
−
N
)
d
N
=
∫
1
d
t
\frac{1}{r}\int \frac{K}{N*(K-N)}dN=\int 1 dt
r1∫N∗(K−N)KdN=∫1dt
拆开分式
1
r
∫
1
N
+
1
K
−
N
d
N
=
∫
1
d
t
\frac{1}{r}\int \frac{1}{N}+\frac{1}{K-N}dN=\int 1 dt
r1∫N1+K−N1dN=∫1dt
计算积分
1
r
(
l
n
N
−
l
n
(
K
−
N
)
+
C
1
)
=
t
+
C
2
\frac{1}{r} \left(ln{N}-ln(K-N)+C_1 \right)=t+C_2
r1(lnN−ln(K−N)+C1)=t+C2
整理一下
N
K
−
N
=
e
r
t
+
r
C
2
−
C
1
\frac{N}{K-N}=e^{rt+rC_2-C_1}
K−NN=ert+rC2−C1
设
C
=
r
C
2
−
C
1
C=rC_2-C_1
C=rC2−C1
有
N
K
−
N
=
e
r
t
+
C
\frac{N}{K-N}=e^{rt+C}
K−NN=ert+C
即
N
=
K
e
r
t
+
C
1
+
e
r
t
+
C
,
也
即
N
=
K
1
+
e
−
r
t
−
C
N=\frac{Ke^{rt+C}}{1+e^{rt+C}},也即N=\frac{K}{1+e^{-rt-C}}
N=1+ert+CKert+C,也即N=1+e−rt−CK
若我们假设
t
=
0
t=0
t=0时刻
N
=
N
0
N=N_0
N=N0
则有
N
0
=
K
1
+
e
−
C
N_0=\frac{K}{1+e^{-C}}
N0=1+e−CK
整理得
C
=
l
n
(
N
0
K
−
N
0
)
C=ln(\frac{N_0}{K-N_0})
C=ln(K−N0N0)
于是结论有
N
=
K
1
+
e
−
r
t
−
C
(
N
t
=
0
=
N
0
,
C
=
l
n
(
N
0
K
−
N
0
)
)
N=\frac{K}{1+e^{-rt-C}}\quad(N_{t=0}=N_0,C=ln(\frac{N_0}{K-N_0}))
N=1+e−rt−CK(Nt=0=N0,C=ln(K−N0N0))
函数图像如下
种群数量变化模型logistic模型的种群数量函数
最新推荐文章于 2024-09-20 21:42:59 发布