机器学习python实践——关于ward聚类分层算法的一些个人心得

最近在利用python跟着参考书进行机器学习相关实践,相关案例用到了ward算法,但是我理论部分用的是周志华老师的《西瓜书》,书上没有写关于ward的相关介绍,所以自己网上查了一堆资料,都很难说清楚ward算法,幸好最后在何晓群老师的《多元统计分析》这本书找到了比较清晰的说法,所以总结出了一些心得,在这篇文章中记录一下,同时,分享给广大网友,大家一起探讨一下,如果有误,也请谅解。当然,如果这篇文章还能入得了各位“看官”的法眼,麻烦点赞、关注、收藏,支持一下!

本文主要从三个方面进行说明:1、方差、离差平方和;2、ward算法原理;3、ward算法距离推导公式举例说明

一、方差、离差平方和

方差:

离差平方和:

对比方差和离差平方和公式,我们可以清楚的看到,离差平方和就是方差公式中的分子部分

另外,我对于离差平方和有两点我要解释一下:

第一点:可能很多人在网上看到的离差平方和公式跟我给出的有点区别,但是两者是一样的,只是网上大部分是拆开并且化简过得,而我这个是和起来的,同样因为我ward算法看的是何晓群老师的书,所以跟书上的表达方式保持一致

第二点:可能很多人在网上看到的离差平方和的符号是ESS,但是我这里却用SS表示,这个我觉得有必要跟大家说清楚,ESS表示的是回归平方和,SS才是离差平方和,两者是完全不同的东西,对此若有质疑,可以查看下面的链接,链接来源于百度百科:

离差平方和_百度百科 (baidu.com)回归平方和_百度百科 (baidu.com)

同时,对于方差,大家网上看到最多的形式应该是上述的形式,但是在聚类分析中,数据点常常是多维数据,所以很多人可能不太清楚对于多维数据方差该如何计算,下面举个二维数据的例子,大家看一下。每个样本通常由两个特征(例如坐标)组成,如(x1,x2),所以方差如下:

其中表示第i个样本点的第一个特征,表示样本均值点的第一个特征   

从上述的公式,我们也就可以知道,离差平方和其实就等于每个样本点到样本均值点的距离的平方和

二、ward算法原理

ward算法认为同类样本之间的离差平方和应该尽量小,不同类之间的离差平方和应该尽量大。

假设,现在有n个样本,我们要将他分成k类,那么第t类样本的离差平和以及整个类内的离差平方和如下所示:

其中, 表示第t类样本的个数,表示第t类样本中的第i个样本,表示第t类样本的均值点

ward算法的目标就是使得聚类完成之后整个类内的离差平方和达到极小,至于为什么,下面解释一下:

从上面的公式中,我们可以看出来,整个类内的离差平方和就是对各类样本的离差平方和的求和,因为ward要求同类样本之间的离差平方和最小,即要求最小,所以整个类内的离差平方和也会达到最小

注意:整个类内的离差平方和不等于不同类之间的离差平方和

引用何晓群老师《多元统计分析》一书中的原话:如果直接将所有分类可能性的离差平方和算出来,然后找出使l达到极小的分类,那么这个计算量是巨大的,对计算机要求是非常高的,因此,ward算法是一种寻找局部最优解的方法,其思想就是先让n个样品各自成一类,然后每次缩小一类,每缩小一类,离差平方和就要增大,选择使增加最小的两类合并,直到所有的样品归为一类为止

我们应该都知道层次聚类算法,本质上都是通过距离来对样本进行聚类操作,距离相近的簇(类)会被划分到同一簇中,所以,ward算法也为我们提供了一种簇间距的算法,帮助我们直接通过对簇间距的计算来近似获得局部最优解,公式如下:

np表示Gp类中样本个数,nk表示Gk类中的样本个数,nr表示Gr类中的样本个数

可能有些小伙伴对于这个上面的距离递推公式看的很迷,所以下面我会借用SciPy帮助文档例子进行举例说明

三、ward算法距离推导公式举例说明

SciPy帮助文档例子的代码如下:

from scipy.cluster.hierarchy import dendrogram, linkage
from matplotlib import pyplot as plt
X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]
Z = linkage(X, 'ward')
fig = plt.figure(figsize=(25, 10))
dn = dendrogram(Z)
print(Z)
plt.show()

通过代码我们知道输入的是数组X,输出的是链接数组Z,其中X是一个8行1列的二维数组,每一行数据都代表着一个位置标记,同时,根据网上大佬的说法Z是一个n行4列的数组,前两列表示要聚类的簇的编号,第三列表示两个即将聚类的簇之间的距离,第四列表示聚类所得的新簇中含有的样本个数

Z的输出如下:

对应于第一行数据可能有些小伙伴会觉得疑惑,5、6是哪里来的?因为上文中已经说过了ward算法会先n个样本各成一类,所以5、6代表数组X的8个样本中编号为5和6的样本,数组X的样本编号对照表如下:

X28041990
簇编号01234567

根据表可以知道,簇编号为5、6代表的样本就是两个位置为9的样本

同时,编号5、6的簇又会聚类成会编号为8的新簇,同理,依次递推,编号2、7的样本又会聚类成会聚类成编号为9的新簇……结果如下所示:

进行聚类操作的簇编号5、62、70、41、89、103、1211、13
新聚类的簇编号891011121314

Z的前两列我已经通过表格说明了,但是相信很多人卡就卡在不知道第三列数据是怎么求的

所以下面对Z的第三列数据进行说明:

重点来了!!!!

第一行数据:由第一个表可知编号为5、6的簇,且都仅包含一个样本,所以样本的位置就代表簇的位置,因此两簇的位置都是9,两簇的距离

第二行数据:由第一个表可知编号为2、7的簇,且都仅包含一个样本,所以样本的位置就代表簇的位置,因此两簇的位置都是0,两簇距离

第三行数据:由第一个表可知编号为0、4的簇,且都仅包含一个样本,所以样本的位置就代表簇的位置,因此两簇的位置分别是2和1,两簇的距离

第四行数据:由第一个表可知编号为1簇仅有一个样本,由表二可知编号为8的簇是由簇5和簇6聚类而来,其中含有两个样本,所以,为了计算簇1和簇8之间的距离,这时就需要用到上述所说到的ward算法的距离递推公式,计算流程如下:

 注意:Dw后面括号中的数字代表簇编号

第五行数据:由第二个表可知编号为9的簇是由簇2和簇7聚类而来,其中含有两个样本,编号为10的簇是由簇0和簇4聚类而来,其中含有两个样本,所以,为了计算簇9和簇10之间的距离,这时就需要用到上述所说到的ward算法的距离递推公式,计算流程如下:

 所以:

 因为比较懒,所以第六行与第七行中的第三列数据我就不再详细列计算过程了,大家看了第四行和第五行的计算过程应该也能明白如何使用ward的距离推导公式了

参考文章:

何晓群.多元统计分析(第五版)[M].中国人民大学出版社,2019.

Python层次聚类sci.cluster.hierarchy.linkage函数详解_scipy.cluster.hierarchy-CSDN博客

### Ward 准则在层次聚类中的原理详解 #### 什么是 Ward 准则? Ward 准则是层次聚类中的一种方法,其核心目标是最小化每次合并簇时引起的总方差增加。具体来说,它通过衡量两个簇合并后的平方误差增量来决定最优的合并方案[^4]。 #### Ward 方法的核心概念 1. **簇间距离定义** 在 Ward 方法中,两个簇 \( C_i \) 和 \( C_j \) 的邻近度被定义为这两个簇合并时导致的平方误差增量。这种增量可以表示为: \[ d(C_i, C_j) = \frac{|C_i| |C_j|}{|C_i| + |C_j|} ||\mu_i - \mu_j||^2 \] 其中: - \( |C_i| \) 表示簇 \( C_i \) 中的数据点数量; - \( \mu_i \) 是簇 \( C_i \) 的质心(即均值向量); - \( ||\cdot||^2 \) 表示欧几里得范数的平方。 这一公式表明,Ward 方法倾向于优先合并那些能够最小化总体方差增长的簇组合。 2. **目标函数优化** Ward 方法的目标是使整个数据集内的平方误差和尽可能小。这一目标与 K 均值聚类非常相似,因为两者都试图最小化簇内偏差。然而,不同之处在于 Ward 方法是一种自下而上的层次聚类技术,而不是迭代划分方法。 3. **簇合并的影响** 当两个簇合并成一个新的簇时,新的簇中心可以通过加权平均计算得到: \[ \mu_{ij} = \frac{|C_i| \mu_i + |C_j| \mu_j}{|C_i| + |C_j|} \] 合并后的新簇会重新参与后续的距离计算,从而影响下一步的合并决策。 #### Ward 方法的优点与局限性 - **优点** - 能够有效减少簇间的离散程度。 - 提供了一种清晰的数学框架用于评估簇的质量。 - 结果通常具有较高的紧凑性和分离度。 - **局限性** - 对初始数据分布较为敏感,尤其是存在噪声或异常值的情况下表现较差[^5]。 - 时间复杂度较高,不适合处理超大规模数据集。 #### 实现 Ward 层次聚类的一个简单例子 以下是使用 Python 的 `scipy` 库实现 Ward 层次聚类的代码示例: ```python from scipy.cluster.hierarchy import linkage, dendrogram import matplotlib.pyplot as plt import numpy as np # 创建随机数据点 np.random.seed(0) data = np.random.rand(10, 2) # 使用 Ward 方法进行层次聚类 Z = linkage(data, method='ward') # 可视化树状图 plt.figure(figsize=(8, 5)) dendrogram(Z) plt.title('Dendrogram using Ward Method') plt.xlabel('Data Points') plt.ylabel('Distance') plt.show() ``` 此代码展示了如何利用 `linkage` 函数执行 Ward 层次聚类,并绘制对应的树状图以直观展示簇结构。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值