【MWORKS专业工具箱系列教程】控制系列工具箱第七期:PID控制器设计

本工具箱教程以控制系统模型创建、分析与设计流程为主线,通过大量示例介绍MWORKS控制系统工具箱的功能和具体使用。共计10篇文章,上一篇主要介绍了控制系统根轨迹分析。

同元软控:【MWORKS专业工具箱系列教程】控制系列工具箱第六期:根轨迹分析

本教程代码均可直接复制到Syslab中运行,使用教程中代码前需参照下述方法加载函数库内容: 方法一:在Syslab的命令行窗口先后输入using TyControlSystems和using TyPlot并回车(重启软件或命令行窗口后需重新输入); 方法二:按照下图中的方法预加载函数库(设置好后每次启动软件默认加载)。


第七期:PID控制器设计

一、PID控制在工业界的应用

在当今应用的工业控制器中,有半数以上采用了PID或变形PID控制器。PID控制的价值取决于它们对大多数控制系统的广泛适用性,体现在:

  1. 原理简单,应用方便,参数整定灵活

  2. 适用性强,特别是当被控对象的数学模型未知,而不能使用解析设计方法时,PID控制就显得特别有用

  3. 鲁棒性强,控制品质对受控对象的变化不太敏感,如受控对象受外界扰动时,无需经常改变控制器参数或结构

国际自动控制联合会(IFAC)每三年召开一次的世界大会是自动控制领域的顶级学术会议

IFAC

IFAC · International Federation of Automatic Control​icon-default.png?t=O83Ahttp://www.ifac-control.org/

IFAC在2014年发布的一项调查报告(链接:A Survey on Industry Impact and Challenges Thereof,Tariq Samad)显示,PID控制在当时仍然是在工业领域具有最大影响力的控制技术。

A Survey on Industry Impact and Challenges Thereof,Tariq Samad

2020年在Annual Reviews in Control中发表的 Industry engagement with control research: Perspective and messages ,表明PID控制的当前影响力仍然最高,且在未来5年内可能是工业实践中影响力较高的控制技术,紧随其后的则是MPC技术。

Industry engagement with control research: Perspective and messages

二、PID控制器基本结构与Syslab中pid函数

PID控制器基本结构

PID控制框图
### 使用 MWorks 搭建倒立摆控制系统 #### 加载必要的函数库 为了使用 MWorks控制系统工具箱来搭建倒立摆控制系统,首先需要加载所需的函数库。可以通过两种方式完成这一操作: - **方法一**:在 Syslab 命令行窗口依次输入 `using TyControlSystems`、`using TyPlot` 和 `using TyBase` 并按回车键执行[^1]。 - **方法二**:通过图形界面配置预加载项,使得每次启动软件时自动加载这些库。这一步骤可以减少重复劳动,提高工作效率。 #### 创建倒立摆系统的数学模型 接下来,在 MWorks 中定义倒立摆的动力学方程。通常情况下,倒立摆系统可以用一组微分方程表示其运动特性。这里提供了一个简单的线性化状态空间表达式的例子: ```matlab A = [0 1; g/l, 0]; % 状态矩阵 A (假设重力加速度g=9.8m/s², 杆长l) B = [0; 1/m*l^2]; % 输入矩阵 B (质量 m) C = eye(2); % 输出矩阵 C D = zeros(2,1); % 直接传递矩阵 D sys = ss(A,B,C,D); ``` 上述代码片段创建了一个连续时间的状态空间对象 `sys` 表示简化后的单级倒立摆模型。 #### 设计控制器 对于这样一个不稳定的过程,PID 控制器是一个常见的选择。下面展示如何利用 MWorks 提供的功能快速构建 PID 调节器并与之前建立的植物模型连接起来形成闭环结构: ```matlab Kp = 10; Ki = 5; Kd = 2; pidController = pid(Kp,Ki,Kd); cl_sys = feedback(sys*pidController,1); ``` 这段脚本实现了比例积分微分控制算法的设计,并将其应用于已有的物理过程之上,从而构成了完整的反馈环路体系。 #### 进行仿真实验 最后,借助于内置的时间响应分析功能测试所设计好的控制系统性能。比如绘制阶跃响应曲线可以帮助评估稳定性以及动态品质指标如上升时间和超调量等参数特征: ```matlab step(cl_sys); title('Step Response of Inverted Pendulum Control System'); grid on; ``` 以上就是基于 MWorks 工具集实现简单版球杆(即所谓的“倒立摆”)稳定化的全过程概述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值