一、概要
论文全称:《FFCA-YOLO for Small Object Detection in Remote Sensing Images》
发表期刊:IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.(TGRS)2024
小目标检测问题一直是目标检测领域的前言,而遥感影像的小目标检测任务中特征表示不足、背景混淆等问题更加严重,这篇文章基于YOLO框架进行改进,通过增加三个即插即用的模块:特征增强模块(FEM)、特征融合模块(FFM)和空间上下文感知模块(SCAM),显著增强了网络的局部感知能力、多尺度特征融合能力和跨通道、跨空间的全局关联能力,同时尽量避免增加复杂度。作者利用VEDAI和AI-TOD两个公共遥感小目标检测数据集和一个自建数据集USOD验证了FFCA-YOLO的有效性和性能的领先。
二、主要贡献
1) 针对遥感应用,设计了一种高效的小物体检测器(FFCA‑YOLO)及其精简版 L‑FFCA‑
YOLO。与几个基准模型和最先进的(SOTA)方法相比,FFCA‑YOLO 在小物体检测任务中具有先进的性能,并具有未来在机载实时应用的潜力。
2)提出了三个创新的轻量级即插即用模块:FEM、FFM和SCAM