yolov5中train.py注释详解

def train(hyp, opt, device, tb_writer=None):
    logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))  # 打印超参数
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'  # runs/train/exp_/weights
    wdir.mkdir(parents=True, exist_ok=True)  # make dir,判断该路径是否存在,如果不存在则创建此路径
    last = wdir / 'last.pt'  # runs/train/exp23/weights/last.pt
    best = wdir / 'best.pt'  # runs/train/exp23/weights/best.pt
    results_file = save_dir / 'results.txt'  # runs/train/exp23/results.txt

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:  # 打开路径save_dir下的hyp.yaml可写文件
        yaml.dump(hyp, f, sort_keys=False)  # 使用dump函数将hyp写入文件f中
    with open(save_dir / 'opt.yaml', 'w') as f:  # 打开路径save_dir下的opt.yaml可写文件
        yaml.dump(vars(opt), f, sort_keys=False)  # 将命令行参数配置 opt 以相同的方式保存为 YAML 文件

    # Configure
    plots = not opt.evolve  # create plots,判断是否创建图表
    cuda = device.type != 'cpu'  # 判断cuda是否存在
    init_seeds(2 + rank)  # 随机数种子
    with open(opt.data) as f:  # 打开sand.yaml文件
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict,将打开的f文件的数据加载到data_dict中
    is_coco = opt.data.endswith('coco.yaml')  # 检查 opt.data 文件的路径是否以 'coco.yaml' 结尾,从而确定是否正在使用 COCO 数据集的配置。

    # Logging- Doing this before checking the dataset. Might update data_dict
    loggers = {'wandb': None}  # loggers dict
    if rank in [-1, 0]:
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
        wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        data_dict = wandb_logger.data_dict
        if wandb_logger.wandb:
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # WandbLogger might update weights, epochs if resuming

    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')  # 判断权重是否以.pt结尾
    if pretrained:  # 预训练
        with torch_distributed_zero_first(rank):  # 检查是否有权重文件,如果没有,尝试下载
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint,加载权重文件
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # model模块
        exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(rank):  # 分布式训练使用
        check_dataset(data_dict)  # check
    train_path = data_dict['train']   # 获取训练集、测试集图片路径
    test_path = data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial),冻结模型的部分参数
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers,对所有层进行训练
        if any(x in k for x in freeze):
            print('freezing %s' % k)  # 打印冻结的参数
            v.requires_grad = False  # 表示这些参数在训练过程中不会更新

    # Optimizer
    """
       nbs为模拟的batch_size; 
       就比如默认的话上面设置的opt.batch_size为16,这个nbs就为64,
       也就是模型梯度累积了64/16=4(accumulate)次之后
       再更新一次模型,变相的扩大了batch_size
    """
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay,避免过拟合
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")  # 日志记录

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups,
    for k, v in model.named_modules():  # 遍历所有层
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            # 检查一个模块v是否具有bias属性,并且该属性是否是nn.Parameter类型。如果满足这两个条件,说明模块的偏置参数是需要被优化的。
            pg2.append(v.bias)  # biases,如果以上两个条件都满足,代码将该模块的偏置参数v.bias添加到pg2列表中
        if isinstance(v, nn.BatchNorm2d):
            # 这行代码检查一个模块v是否是nn.BatchNorm2d类型
            pg0.append(v.weight)  # no decay,如果满足条件,将该模块的weight参数添加到pg0列表中。
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            # 检查一个模块v是否具有weight属性,并且该属性是否是nn.Parameter类型
            pg1.append(v.weight)  # apply decay,将该模块的权重参数v.weight添加到pg1列表中

    if opt.adam:
        # 若opt.adam为true,则采用adam优化器,pg0为需要优化的数组,lr0为学习率,betas是一组用于计算梯度和梯度平方的超参数
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        # 否则采用SGD优化器,momentum是动量参数,nesterov表示是否使用Nesterov动量。
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2  # 删除临时变量,释放内存

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:  # 若为真,则选用线性学习率调度器
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    else:  # 否则选用余弦退火式调度器
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # 创建scheduler的学习率调度器对象,会根据训练的进程更新优化器的学习率。
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None  # 指数移动平均对象

    # Resume:从断点中恢复训练
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        # 加载优化器与best_fitness
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])  # 恢复之前保存的优化器状态
            best_fitness = ckpt['best_fitness']

        # EMA,恢复EMA状态
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results,恢复训练结果,并保存到文件中
        if ckpt.get('training_results') is not None:
            results_file.write_text(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1  # 加载训练的轮次,当训练完毕后,epoch为-1
        if opt.resume:  # 若resume为真,则检查start_epoch是否大于0,若不大于0,则输出字符串
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
        if epochs < start_epoch:
            logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                        (weights, ckpt['epoch'], epochs))  # 指出已经训练的周期数
            epochs += ckpt['epoch']  # finetune additional epochs,更新训练周期数

        del ckpt, state_dict  # 清理内存空间

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)  # gs为最大步幅的整数值:卷积操作每次移动的像素数
    nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])  # 获取模型最后一个检测层的数量
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples
    # 检测opt.img_size是否是gs的整数倍,imgsz表示训练图像,imgsz_test表示测试图像

    # DP mode,分布式训练
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm,同步批归一化
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Trainloader,创建训练集
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
                                            world_size=opt.world_size, workers=opt.workers,
                                            image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class,获取标签的最大类别值
    nb = len(dataloader)  # number of batches,训练数据集被分成多少批次
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
    # 与类别数比较,若大于类别数代表有问题

    # Process 0
    if rank in [-1, 0]:
        testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt,  # testloader,验证集
                                       hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
                                       world_size=opt.world_size, workers=opt.workers,
                                       pad=0.5, prefix=colorstr('val: '))[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)  # 所有样本标签组成一个numpy数组
            c = torch.tensor(labels[:, 0])  # classes,标签中提取类别信息
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)  # 如果plots为真,则会绘制类别标签的分布图以及其他可视化图表,并保存
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)  # 若tb_writer为真,则将直方图添加到TensorBoard

            # Anchors
            if not opt.noautoanchor:  # noautoanchor未被调用,则默认为false
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)  # 根据数据集和特征图自动调整锚框的尺寸
            model.half().float()  # pre-reduce anchor precision

    # DDP mode,分布式训练使用
    if cuda and rank != -1:
        model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
                    # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
                    find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))

    # Model parameters
    # 这些超参数是损失函数的系数,适应不同训练数据和任务
    hyp['box'] *= 3. / nl  # scale to layers,nl为检测层的数量
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers,nc表示类别数
    hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing  # 用不到
    model.nc = nc  # attach number of classes to model,表示将类别数量附加到模型上
    model.hyp = hyp  # attach hyperparameters to model,表示将超参数附加到模型上
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou),用于控制是否使用IOU损失,iou表示交并比
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc
    # attach class weights,model.class_weights 被设置为类别权重,这些权重用于调整不同类别在损失计算中的贡献
    model.names = names  # 表示将类别名称列表附加到模型上

    # Start training
    t0 = time.time()  # 记录训练一轮的时间
    # 获取热身阶段的迭代次数
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class,包含每个类别的MAP,MAP:精确率和召回率曲线下的面积
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls),包含不同指标的元组
    """
       设置学习率衰减所进行到的轮次,
       目的是打断训练后,--resume接着训练也能正常的衔接之前的训练进行学习率衰减
    """
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)  # 缩放梯度
    compute_loss = ComputeLoss(model)  # init loss class,计算损失函数
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')  # 加载训练的基本信息,--图像尺寸等
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()  # 训练

        # Update image weights (optional),更新权重
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights,计算每个类别的权重
                iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights,根据类别权重计算图像权重
                dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx,根据iw对数据集随机采样
            # Broadcast if DDP,分布式训练使用
            if rank != -1:
                indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses,保存平均损失,维度为4
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)  # 分布式训练
        pbar = enumerate(dataloader)  # 遍历每个批次数据
        # 打印训练批次的表头信息
        logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar,显示训练进度条,nb:批次的总数量
        optimizer.zero_grad()  # 优化器的梯度置零
        # 遍历每个批次
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup,用于学习率的调整,使模型在训练初期能更快适应数据,然后用稳定的学习率进行训练
            if ni <= nw:  # ni表示当前迭代的次数,nw代表预热的迭代次数
                xi = [0, nw]  # x interp,xi是一个用于插值的数组
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())  # 累积梯度的迭代次数,多少次迭代后进行一次梯度更新
                for j, x in enumerate(optimizer.param_groups):  # 循环遍历优化器中的参数
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])  # 学习率的调整

                    if 'momentum' in x:  # 若当前参数包含动量值,则将动量值逐渐增加到正常值
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale,多尺度训练模式,根据输入的照片不同进行随机尺度变换
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward,前向传播
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward,反向传播
            scaler.scale(loss).backward()

            # Optimize,模型优化,包括梯度累计,梯度更新,权重更新,EMA更新
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print,打印训练过程的状态信息
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB),计算内存占用
                s = ('%10s' * 2 + '%10.4g' * 6) % (
                    '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)  # 更新进度条的描述信息

                # Plot
                if plots and ni < 3:  # plots是一个bool值:是否可视化,ni为当前迭代次数
                    f = save_dir / f'train_batch{ni}.jpg'  # filename,保存一个用于保存图像的文件
                    Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()  # 绘制图像并保存至文件中
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), [])  # add model graph
                elif plots and ni == 10 and wandb_logger.wandb:  # wandb_logger.wandb存在,会在WandB中记录图像
                    wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
                                                  save_dir.glob('train*.jpg') if x.exists()]})

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler,在tensorboard中记录学习率的变化
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()  # 调整学习率

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            # 给ema更新信息
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
            final_epoch = epoch + 1 == epochs  # 判断是否是最后一轮
            if not opt.notest or final_epoch:  # Calculate mAP,若不是opt.notest(测试)或处于最后一轮
                wandb_logger.current_epoch = epoch + 1  # 记录当前轮数
                results, maps, times = test.test(data_dict,
                                                 batch_size=batch_size * 2,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 verbose=nc < 50 and final_epoch,
                                                 plots=plots and final_epoch,
                                                 wandb_logger=wandb_logger,
                                                 compute_loss=compute_loss,
                                                 is_coco=is_coco)

            # Write
            with open(results_file, 'a') as f:  # 保存训练结果的状态信息
                f.write(s + '%10.4g' * 7 % results + '\n')  # append metrics, val_loss
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))

            # Log,tags 是用于记录到 TensorBoard 和 WandB 中的标签列表
            tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                    'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                    'x/lr0', 'x/lr1', 'x/lr2']  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb_logger.wandb:
                    wandb_logger.log({tag: x})  # W&B

            # Update best mAP
            # 拟合参数,记录综合参数
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            if fi > best_fitness:
                best_fitness = fi  # 记录最佳参数
            wandb_logger.end_epoch(best_result=best_fitness == fi)  # 结束训练,并且将fi保存至wandb

            # Save model
            if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save,是否需要保存模型
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': results_file.read_text(),
                        'model': deepcopy(model.module if is_parallel(model) else model).half(),
                        'ema': deepcopy(ema.ema).half(),
                        'updates': ema.updates,
                        'optimizer': optimizer.state_dict(),
                        'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}

                # Save last, best and delete
                torch.save(ckpt, last)  # 将ckpt中文件保存至last文件中
                if best_fitness == fi:  # 若当前性能为最佳性能,则将其保存为best文件
                    torch.save(ckpt, best)
                if wandb_logger.wandb:  # 是否使用wandb记录信息
                    if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(
                            last.parent, opt, epoch, fi, best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    if rank in [-1, 0]:
        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png,是否绘制结果图
            if wandb_logger.wandb:
                files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
                # files为一个列表包含了要上传但wandb的图像文件名
                wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
                                              if (save_dir / f).exists()]})
                # caption=f 指定图像的标题为文件名,对每个图像文件名进行循环遍历,并仅处理存在的文件。

        # Test best.pt
        # 记录训练过程的总耗时,以及完成的 epoch 数量和所用时间
        logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO,检查数据集是否是 COCO 数据集,并且类别数量是否为 80
            for m in (last, best) if best.exists() else (last):  # speed, mAP tests,是否存在best模型。若存在,会测last和best,否则只测last
                results, _, _ = test.test(opt.data,
                                          batch_size=batch_size * 2,
                                          imgsz=imgsz_test,
                                          conf_thres=0.001,
                                          iou_thres=0.7,
                                          model=attempt_load(m, device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=True,
                                          plots=False,
                                          is_coco=is_coco)

        # Strip optimizers
        final = best if best.exists() else last  # final model,最终使用的模型是best模型(如果存在),否则是last模型。
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers,用于去除模型中的优化器参数
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload,若设置了opt.bucket,将最终模型文件上传到云存储。
        if wandb_logger.wandb and not opt.evolve:  # Log the stripped model
            wandb_logger.wandb.log_artifact(str(final), type='model',
                                            name='run_' + wandb_logger.wandb_run.id + '_model',
                                            aliases=['last', 'best', 'stripped'])
        wandb_logger.finish_run()  # 结束WandB记录的运行
    else:
        dist.destroy_process_group()
    torch.cuda.empty_cache()  # 清理GPU内存中的缓存,以释放空间
    return results


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='models/sands.yaml', help='model.yaml path')
    parser.add_argument('--data', type=str, default='data/sand.yaml', help='data.yaml path')
    parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=100)
    parser.add_argument('--batch-size', type=int, default=5, help='total batch size for all GPUs')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--notest', action='store_true', help='only test final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
    parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
    parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
    parser.add_argument('--project', default='runs/train', help='save to project/name')
    parser.add_argument('--entity', default=None, help='W&B entity')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
    parser.add_argument('--linear-lr', action='store_true', help='linear LR')
    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
    parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
    parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
    parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
    parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
    opt = parser.parse_args()

    # Set DDP variables
    opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1  # 设置参数值
    opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
    set_logging(opt.global_rank)
    if opt.global_rank in [-1, 0]:  # 判断global_rank是否为-1或0
        check_git_status()
        check_requirements()  # 检查依赖是否安装

    # Resume
    wandb_run = check_wandb_resume(opt)
    if opt.resume and not wandb_run:  # resume an interrupted run
        ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
        assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
        apriori = opt.global_rank, opt.local_rank
        with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
            opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader))  # replace
        opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori  # reinstate
        logger.info('Resuming training from %s' % ckpt)
    else:
        # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
        opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp)  # check files
        # 检查data,cfg,hyp文件是否存在,hyp为超参数
        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
        # 使用断言来检查 opt.cfg 和 opt.weights 属性是否至少有一个不为空,因为在训练时要么提供配置文件 --cfg,要么提供权重文件 --weights
        opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size)))  # extend to 2 sizes (train, test)
        opt.name = 'evolve' if opt.evolve else opt.name
        # 如果 opt.evolve 为真,则将 opt.name 设置为 'evolve',否则保持不变。--未使用evolve选项
        opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve)  # increment run
        # 增量路径--runs/train/exp_,如果设置了 opt.evolve 或 opt.exist_ok,则使用 increment_path 函数以避免目录重名。

    # DDP mode
    opt.total_batch_size = opt.batch_size  # 选择使用的设备是cpu还是gpu
    device = select_device(opt.device, batch_size=opt.batch_size)
    if opt.local_rank != -1:  # 是否进行分布式训练
        assert torch.cuda.device_count() > opt.local_rank
        torch.cuda.set_device(opt.local_rank)
        device = torch.device('cuda', opt.local_rank)
        dist.init_process_group(backend='nccl', init_method='env://')  # distributed backend
        assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
        opt.batch_size = opt.total_batch_size // opt.world_size

    # Hyperparameters
    with open(opt.hyp) as f:  # 打开指定的超参数文件
        hyp = yaml.load(f, Loader=yaml.SafeLoader)  # load hyps  # 从yaml模块中的load函数加载超参数,yaml.SafeLoader 被用于安全地加载 YAML 数据

    # Train
    logger.info(opt)
    if not opt.evolve:
        tb_writer = None  # init loggers,初始化 TensorBoard 记录器
        if opt.global_rank in [-1, 0]:
            prefix = colorstr('tensorboard: ')
            logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
            # 在日志中输出 TensorBoard 的启动提示信息,告诉您如何在本地查看 TensorBoard 的可视化结果。
            tb_writer = SummaryWriter(opt.save_dir)
            # Tensorboard,创建一个 TensorBoard 记录器,保存在指定的 opt.save_dir 目录下--runs/train/exp_
        train(hyp, opt, device, tb_writer)  # 训练

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
                'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
                'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
                'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
                'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
                'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
                'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
                'box': (1, 0.02, 0.2),  # box loss gain
                'cls': (1, 0.2, 4.0),  # cls loss gain
                'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
                'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
                'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
                'iou_t': (0, 0.1, 0.7),  # IoU training threshold
                'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
                'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
                'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
                'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
                'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
                'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
                'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
                'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
                'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
                'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
                'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
                'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
                'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
                'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
                'mixup': (1, 0.0, 1.0)}  # image mixup (probability)

        assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
        opt.notest, opt.nosave = True, True  # only test/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml'  # save best result here
        if opt.bucket:
            os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket)  # download evolve.txt if exists

        for _ in range(300):  # generations to evolve
            if Path('evolve.txt').exists():  # if evolve.txt exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt('evolve.txt', ndmin=2)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min()  # weights
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([x[0] for x in meta.values()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device)

            # Write mutation results
            print_mutation(hyp.copy(), results, yaml_file, opt.bucket)

        # Plot results
        plot_evolution(yaml_file)
        print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
              f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
引用\[1\]:前一篇博客已经对yolov5的一些前期准备和训练参数进行了整理,本篇博客将详细解读项目train.py内容,以帮助大家学习。\[1\]引用\[3\]:本文主要对ultralytics\yolov5的训练代码train.py的解析,对于yolov5的训练代码train.py的解析,以下注释与解析都是适用的。\[3\] 问题: yolov5 train.py6.0详解 回答: 对于yolov5的train.py代码的详细解析,可以参考前面提到的博客的内容。在train.py,主要包括了训练函数train()的实现以及一些相关的参数设置和功能。train()函数是用来进行模型的训练的核心函数,其包括了数据加载、模型初始化、优化器设置、损失函数定义、训练循环等步骤。通过对train.py代码的解析,可以更好地理解yolov5的训练过程和相关的实现细节。\[1\]\[3\] #### 引用[.reference_title] - *1* *2* [yolov5代码解读--train.py](https://blog.csdn.net/weixin_43337201/article/details/109389044)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [YOLOV5训练代码train.py注释与解析](https://blog.csdn.net/Q1u1NG/article/details/107463417)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值