梯度向量与梯度下降法


    最近非常热门的“深度学习”领域,用到了一种名为“梯度下降法”的算法。梯度下降法是机器学习中常用的一种方法,它主要用于快速找到“最小误差”(the minimum error)。要掌握“梯度下降法”,就需要先搞清楚什么是“梯度”,本文将从这些基本概念:方向导数(directional derivative)与偏导数、梯度(gradient)、梯度向量(gradient vector)等出发,带您领略“深度学习”中的“最小二乘法”、“梯度下降法”和“线性回归”。

  • 偏导数(Partial derivate)
  • 方向导数(Directional derivate)
  • 梯度(Gradient)
  • 线性回归(linear regression)
  • 梯度下降(Gradient descent)



一、方向导数


1,偏导数
  先回顾一下一元导数和偏导数,一元导数表征的是:一元函数 f(x) f ( x ) 与自变量 x x 在某点附近变化的比率(变化率),如下:

f ( x 0 ) = d f ( x ) d x x = x 0 = lim Δ x 0 f ( x 0 + Δ x ) f ( x 0 ) Δ x

  而二元函数的偏导数表征的是:函数 F(x,y) F ( x , y ) 与自变量 x x (或 y ) 在某点附近变化的比率(变化率),如下:

Fx(x0,y0)=Fxx=x0,y=y0=limΔx0F(x0+Δx,y0)F(x0,y0)Δx F x ( x 0 , y 0 ) = ∂ F ∂ x ∣ x = x 0 , y = y 0 = lim Δ x → 0 F ( x 0 + Δ x , y 0 ) − F ( x 0 , y 0 ) Δ x

  以长方形的面积 z=F(x,y) z = F ( x , y ) 为例,如下图:
这里写图片描述

如果说 z=F(x,y)=xy z = F ( x , y ) = x ⋅ y 表示以 P(x,y) 点和原点为对角点的矩形的面积,那么 z=F(x,y) z = F ( x , y ) P0 P 0 点对x 的偏导数表示 P0 P 0 点沿平行于 x 轴正向移动,矩形的面积变化量与 P0 P 0 点在 x方向的移动距离的比值

Fx(x0,y0)=Fx=limΔx0ΔSΔx F x ( x 0 , y 0 ) = ∂ F ∂ x = lim Δ x → 0 Δ S Δ x

同样地,可得
Fy(x0,y0)=Fy=limΔy0ΔSΔy F y ( x 0 , y 0 ) = ∂ F ∂ y = lim Δ y → 0 Δ S Δ y

需要注意的是:
  矩形面积的这个例子有时候也很容易让人混淆,上图中无论 x 还是 y ,都是输入变量,输出变量 S 并没有用坐标轴的形式画出来。也就是说,这个例子实际上是一个三维空间的函数关系,而不是二维平面的函数关系。
  
向量角度看偏导数:
  偏导数向量 [FxFy] [ F x F y ] 是坐标向量(原向量) [xy
  • 21
    点赞
  • 81
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值