机器学习-非线性关系拟合(Linear, Quadratic和Cubic)

本文通过二次(二次)和三次(三次)多项式,以及线性拟合,分析了房屋价格与LSTAT(人口较低地位的百分比)之间的关系。引用自Sebastian Raschka和Vahid Mirjalili的《Python机器学习》第二版。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Section I: Code Bundle and Result Analyses

The relationship between house prices and LSTAT(percent lower status of the population) will be fitted via the second degree (quadratic) and the third degree (cubic) polynominals as well as linear fit here.

FROM
Sebastian Raschka, Vahid Mirjalili. Python机器学习第二版. 南京:东南大学出版社,2018.

代码

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import mean_squared_error,r2_score
import matplotlib.pyplot as plt
import numpy as np
import warnings
warnings.filterwarnings("ignore")

plt.rcParams['figure.dpi']=200
plt.rcParams['savefig.dpi']=200
font = {
   'family': 'Times New Roman',
        'weight'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值