机器学习|随机变量独立性(二维随机变量及多维)|10mins入门|概统学习笔记(三)

随机变量的独立性

  • 两随机变量独立的定义(各种情况):

    • 两事件A,B独立的定义:若有
      P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
      则称事件A,B独立。

    • 设X,Y是两个随机变量,若对任意的x,y,有

    P ( X ≤ x , Y ≤ y ) = P ( X ≤ x ) P ( Y ≤ y ) P(X\leq x,Y\leq y)=P(X\leq x)P(Y\leq y) P(Xx,Yy)=P(Xx)P(Yy)

    ​ 则称X,Y相互独立

    • 用分布函数表示,即设X,Y是两个随机变量,对任意的随机变量x,y,有
      F ( x , y ) = F X ( x ) F Y ( y ) F(x,y)=F_X(x)F_Y(y) F(x,y)=FX(x)FY(y)
      则称X,Y相互独立

      它表明,两个随机变量相互独立时,它们的联合分布函数等于两个边缘分布函数的乘积。

    • 若(X,Y)是离散型随机变量,则上述独立性的定义等价于:对(X,Y)的所有可能取值 ( x i , y j ) (x_i,y_j) (xi,yj)
      P ( X = x i , Y = y j ) = P ( X = x i ) P ( Y = y j ) P(X=x_i,Y=y_j)=P(X=x_i)P(Y=y_j) P(X=xi,Y=yj)=P(X=xi)P(Y=yj)
      则称X和Y相互独立

    • 若(X,Y)是连续型随机变量,则上述独立性定义等价于:对任意的x,y,有
      f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)
      几乎处处成立(在平面上除去面积为0的集合外,处处成立),则称X,Y相互独立。

      其中 f ( x , y ) f(x,y) f(x,y)是X,Y的联合密度, f X ( x ) , f Y ( y ) f_X(x),f_Y(y) fX(x),fY(y)分别是X的边缘密度和Y的边缘密度

  • 推广到两个以上的随机变量的情形:

    • 定理1:若连续型随机向量 ( X 1 , . . . , X n ) (X_1,...,X_n) (X1,...,Xn)的概率密度函数 f ( x 1 , . . . , x n ) f(x_1,...,x_n) f(x1,...,xn)可表示为n个函数 g 1 , . . . , g n g_1,...,g_n g1,...,gn之积,其中 g i g_i gi只依赖于 x i x_i xi,即
      f ( x 1 , . . . , x n ) = g 1 ( x 1 ) × . . . × g n ( x n ) f(x_1,...,x_n)=g_1(x_1)\times ...\times g_n(x_n) f(x1,...,xn)=g1(x1)×...×gn(xn)
      X 1 , . . , X n X_1,..,X_n X1,..,Xn相互独立,且 X i X_i Xi的边缘密度 f i ( x i ) f_i(x_i) fi(xi) g i ( x i ) g_i(x_i) gi(xi)只相差一个常数因子。

    • 定理2:若 X 1 , . . . , X n X_1,...,X_n X1,...,Xn相互独立,而
      Y 1 = g 1 ( X 1 , . . . , X m ) , Y 2 = g 2 ( X m + 1 , . . . , X n ) Y_1=g_1(X_1,...,X_m),Y_2=g_2(X_{m+1},...,X_n) Y1=g1(X1,...,Xm)Y2=g2(Xm+1,...,Xn)
      Y 1 Y_1 Y1 Y 2 Y_2 Y2独立。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值