随机变量统计独立性的相关证明

本文探讨了两个统计独立的随机变量x和z的和的期望与方差,并给出了详细的数学推导过程。证明了E[x+z]=E[x]+E[z]以及var[x+z]=var[x]+var[z]。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 和的期望和方差

两随机变量 x,z 统计独立,证明下列两个等式:

{E[x+z]=E[x]+E[z]var[x+z]=var[x]+var[z]

不失一般性地设二者均是连续型随机变量,则根据随机变量的期望和方差的计算公式有:

E[x+z]=(x+z)p(x,z)dxdz=(x+z)p(x)p(z)dxdz=xp(x)dx+zp(z)dz=E[x]+E[z]

进一步可计算二者和的方差:

var[x+z]===((x+z)E[x+z])2p(x,z)dxdz(xE[x])2p(x)dx+(zE[z])2p(z)dzvar[x]+var[z]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五道口纳什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值