机器学习|五个重要的抽样分布定理|15mins入门|概统学习笔记(二十一)

重要的抽样分布定理

  • 前提:都是单个总体的样本,样本的数学期望和方差都易求,以此来求总体的数学期望和方差
定理1(样本均值的分布)
  • 定义:设 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是取自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本,则有 X ‾ \overline X X~ N ( μ , σ 2 n ) N(\mu,\frac{\sigma^2}{n}) N(μ,nσ2)

    因此 X ‾ − μ σ / n \frac{\overline X - \mu}{\sigma/\sqrt{n}} σ/n Xμ~ N ( 0 , 1 ) N(0,1) N(0,1)

  • 作用:可推测总体的 μ 、 σ 2 \mu、\sigma^2 μσ2值,但前提是至少有一个已知

    证明:

E ( X ‾ ) = E ( 1 n ∑ i = 1 n X i ) = 1 n E ( ∑ i = 1 n X i ) = 1 n ( ∑ i = 1 n E X i ) = 1 n × n × μ = μ E(\overline X)=E(\frac{1}{n}\sum_{i=1}^nX_i)=\frac{1}{n}E(\sum_{i=1}^nX_i)=\frac{1}{n}(\sum_{i=1}^nEX_i)=\frac{1}{n}\times n \times\mu=\mu E(X)=E(n1i=1nXi)=n1E(i=1nXi)=n1(i=1nEXi)=n1×n×μ=μ

D ( X ‾ ) = D ( 1 n ∑ i = 1 n X i ) = 1 n 2 D ( ∑ i = 1 n X i ) = 1 n 2 ( ∑ i = 1 n D X i ) = 1 n 2 × n × σ 2 = σ 2 n D(\overline X)=D(\frac{1}{n}\sum_{i=1}^nX_i)=\frac{1}{n^2}D(\sum_{i=1}^nX_i)=\frac{1}{n^2}(\sum_{i=1}^nDX_i)=\frac{1}{n^2}\times n\times \sigma^2 = \frac{\sigma^2}{n} D(X)=D(n1i=1nXi)=n21D(i=1nXi)=n21(i=1nDXi)=n21×n×σ2=nσ2

在这里插入图片描述

定理2 (样本方差的分布)
  • 定义:设 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是取自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本, X ‾ \overline X X S 2 S^2 S2分别为样本均值和样本方差,则有 ( n − 1 ) S 2 σ 2 \frac{(n-1)S^2}{\sigma^2} σ2(n1)S2~ χ 2 ( n − 1 ) \chi^2(n-1) χ2(n1),且 X ‾ \overline X X S 2 S^2 S2相互独立。

  • 作用:在总体的 μ \mu μ未知时,可推测总体的 σ 2 \sigma^2 σ2的值。

在这里插入图片描述

定理3(样本的均值与方差的联合分布)
  • X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是取自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)的样本, X ‾ \overline X X S 2 S^2 S2分别为样本均值和样本方差,则有

    X ‾ − μ S / n \frac{\overline X-\mu}{S/\sqrt{n}} S/n Xμ~ t ( n − 1 ) t(n-1) t(n1)

  • 作用:在总体的 σ 2 \sigma^2 σ2未知时,可推测总体的 μ \mu μ

  • 证明:

    由定理一可知: X ‾ − μ σ / n \frac{\overline X-\mu}{\sigma/\sqrt{n}} σ/n Xμ~ N ( 0 , 1 ) N(0,1) N(0,1)

    由定理二可知: ( n − 1 ) S 2 σ 2 \frac{(n-1)S^2}{\sigma^2} σ2(n1)S2~ χ 2 ( n − 1 ) \chi^2(n-1) χ2(n1)

    且两者相互独立,由t分布的定义可知

    X ‾ − μ σ / n ( n − 1 ) S 2 σ 2 ( n − 1 ) \frac{\frac{\overline X-\mu}{\sigma/\sqrt n}}{\sqrt{\frac{(n-1)S^2}{\sigma^2(n-1)}}} σ2(n1)(n1)S2 σ/n Xμ~ t ( n − 1 ) → X ‾ − μ S / n t(n-1) \quad \to \quad \frac{\overline X-\mu}{S/\sqrt{n}} t(n1)S/n Xμ~ t ( n − 1 ) t(n-1) t(n1)

定理4 (两总体样本均值差的分布)
  • X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2) Y Y Y~ N ( μ 2 , σ 2 ) N(\mu_2,\sigma^2) N(μ2,σ2),且X与Y独立, X 1 , X 2 , . . . , X n 2 X_1,X_2,...,X_{n_2} X1,X2,...,Xn2是取自X的样本, Y 1 , Y 2 , . . . , Y n 2 Y_1,Y_2,...,Y_{n_2} Y1,Y2,...,Yn2取自Y的样本, X ‾ \overline X X Y ‾ \overline Y Y分别是这两个样本的样本均值, S 1 2 S_1^2 S12 S 2 2 S_2^2 S22分别是这两个样本的样本方差,则有

    X ‾ − Y ‾ − ( μ 1 − μ 2 ) ( n − 1 ) S 1 2 + ( n 2 − 1 S 2 2 ) n 1 + n 2 − 2 1 n 1 + 1 n 2 \frac{\overline X-\overline Y-(\mu_1-\mu_2)}{\sqrt{\frac{(n-1)S_1^2+(n_2-1S_2^2)}{n_1+n_2-2}}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}} n1+n22(n1)S12+(n21S22) n11+n21 XY(μ1μ2)~ t ( n 1 + n 2 − 2 ) t(n_1+n_2-2) t(n1+n22)

定理5 (两总体样本方差比的分布)
  • X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) Y Y Y~ N ( μ 2 , σ 2 ) N(\mu_2,\sigma^2) N(μ2,σ2),且X与Y独立, X 1 , X 2 , . . . , X n 2 X_1,X_2,...,X_{n_2} X1,X2,...,Xn2是取自X的样本, Y 1 , Y 2 , . . . , Y n 2 Y_1,Y_2,...,Y_{n_2} Y1,Y2,...,Yn2取自Y的样本, X ‾ \overline X X Y ‾ \overline Y Y分别是这两个样本的样本均值, S 1 2 S_1^2 S12 S 2 2 S_2^2 S22分别是这两个样本的样本方差,则有

    S 1 2 / σ 1 2 S 2 2 / σ 2 2 \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} S22/σ22S12/σ12~ F ( n 1 − 1 , n 2 − 1 ) F(n_1-1,n_2-1) F(n11,n21)

  • 作用:可推测两个总体的方差比值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值