机器学习|区间估计(置信区间基本概念+一般解法)(一)| 15mins 入门 |概统学习笔记(二十七)

统计推断的基本问题

(1)参数估计问题:总体X的分布函数的形式已知,但它的一个或多个参数为未知,需要借助于X的样本来估计它们。有两种形式:点估计和区间估计

(2)假设检验问题:总体X的分布函数的形式完全未知,或只知其形式,但不知其参数,为了推断总体的某些未知特性,提出某些关于总体的假设。

区间估计

引入:点估计值仅仅是未知参数的一个近似值,它没有反映出这个近似值的误差范围,使用起来把握不大。而区间估计正好弥补了点估计的这个缺陷。

譬如,在估计湖中鱼数的问题中,若根据一个实际样本,得到鱼数N的极大似然估计为1000条,实际上,N的真值可能大于1000条,也可能小于1000条,若能给出一个区间,使我们能以比较高的可靠程度相信它包含真参数值。

在这里插入图片描述
​这里所说的”可靠程度“是用概率来度量的,称为置信概率置信度置信水平

习惯上把置信水平记作 1 − α 1-\alpha 1α,这里 α \alpha α是一个很小的正数。

​置信水平的大小是根据实际需要选定的。
一、置信区间的基本概念

  • 置信区间的定义:

    θ \theta θ是一个待估参数,给定 α > 0 \alpha>0 α>0,若由样本 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn确定的两个统计量 θ ^ 1 = θ ^ 1 ( X 1 , X 2 , . . . , X n ) , θ ^ 2 = θ ^ 2 ( X 1 , X 2 , . . . , X n ) ( θ ^ 1 < θ ^ 2 ) \hat \theta_1=\hat \theta_1(X_1,X_2,...,X_n),\hat \theta_2=\hat \theta_2(X_1,X_2,...,X_n)(\hat \theta_1<\hat \theta_2) θ^1=θ^1(X1,X2,...,Xn),θ^2=θ^2(X1,X2,...,Xn)(θ^1<θ^2)满足
    P { θ ^ 1 ≤ θ ≤ θ ^ 2 } = 1 − α P\{\hat \theta_1\leq \theta \leq \hat \theta_2\}=1-\alpha P{θ^1θθ^2}=1α
    则称区间 [ θ ^ 1 , θ ^ 2 ] [\hat \theta_1,\hat \theta_2] [θ^1,θ^2] θ \theta θ的置信水平(置信度、置信概率)为 1 − α 1-\alpha 1α的置信区间, θ ^ 1 \hat \theta_1 θ^1 θ ^ 2 \hat \theta_2 θ^2分别称为置信下限和置信上限。通常可取置信水平 1 − α = 0.95 1-\alpha=0.95 1α=0.95 0.9 0.9 0.9等。

    可见,对参数 θ \theta θ作区间估计,就是要设法找出两个只依赖于样本的界限(构造统计量)
    θ ^ 1 = θ ^ 1 ( X 1 , . . . , X n ) θ ^ 2 = θ ^ 2 ( X 1 , . . . , X n ) \hat \theta_1=\hat \theta_1(X_1,...,X_n) \\ \hat \theta_2=\hat \theta_2(X_1,...,X_n) θ^1=θ^1(X1,...,Xn)θ^2=θ^2(X1,...,Xn)
    其中 θ ^ 1 < θ ^ 2 \hat \theta_1 < \hat \theta_2 θ^1<θ^2,一旦有了样本,就把 θ \theta θ估计在区间 [ θ ^ 1 , θ ^ 2 ] [\hat \theta_1, \hat \theta_2] [θ^1,θ^2]内。

  • 要求:

    1. 要求 θ \theta θ以很大的可能被包含在区间 [ θ ^ 1 , θ ^ 2 ] [\hat \theta_1,\hat \theta_2] [θ^1θ^2]内,就是说,概率 P { θ ^ 1 ≤ θ ≤ θ ^ 2 } P\{\hat \theta_1\leq \theta\leq \hat \theta_2\} P{θ^1θθ^2}要尽可能大。即要求估计尽量可靠。
    2. 估计的精度要尽可能的高。如要求区间长度 θ ^ 2 − θ ^ 1 \hat \theta_2 - \hat \theta_1 θ^2θ^1尽可能短,或能体现该要求的其它准则。
    3. 可靠度与精度是一对矛盾,一般是在保证可靠度的条件下,尽可能提高精度。
  • 寻找置信区间的方法,一般是从确定误差限入手。

​ 我们选取未知参数的某个估计量 θ ^ \hat \theta θ^,根据置信水平 1 − α 1-\alpha 1α,可以找到一个正数 δ \delta δ,使得
P { ∣ θ ^ − θ ∣ ≤ δ } = 1 − α P\{|\hat \theta-\theta|\leq \delta\}=1-\alpha P{θ^θδ}=1α
​ 称 δ \delta δ θ ^ \hat \theta θ^ θ \theta θ之间的误差限

​ 只要知道 θ ^ \hat \theta θ^的概率分布,确定误差限并不难。

​ 由不等式 ∣ θ ^ − θ ∣ ≤ δ |\hat \theta - \theta|\leq \delta θ^θδ可以解出 θ \theta θ
θ ^ − δ ≤ θ ≤ θ ^ + δ \hat \theta-\delta \leq \theta \leq \hat \theta + \delta θ^δθθ^+δ
​ 这个不等式就是我们所求的置信区间。

二、置信区间的求法

  • 一般步骤:

    1. 明确问题,是求什么参数的置信区间?置信水平 1 − α 1-\alpha 1α是多少?

    2. 寻找参数 θ \theta θ的一个良好的点估计
      T ( X 1 , X 2 , . . . , X n ) T(X_1,X_2,...,X_n) T(X1,X2,...,Xn)

    3. 寻找一个待估参数 θ \theta θ和估计量 T T T的函数 S ( T , θ ) S(T,\theta) S(T,θ),且其分布为已知。称 S ( T , θ ) S(T,\theta) S(T,θ)为枢轴量。

    4. 对于给定的置信水平 1 − α 1-\alpha 1α,根据 S ( T , θ ) S(T,\theta) S(T,θ)的分布,确定常数 a 、 b a、b ab,使得
      P ( a ≤ S ( T , θ ) ≤ b ) = 1 − α P(a\leq S(T,\theta)\leq b)=1-\alpha P(aS(T,θ)b)=1α

    5. 对" α ≤ S ( T , θ ) ≤ b \alpha\leq S(T,\theta) \leq b αS(T,θ)b"作等价变形,得到如下形式:
      P { θ ^ 1 ≤ θ ≤ θ ^ 2 } = 1 − α P\{\hat \theta_1 \leq \theta \leq \hat \theta_2\}=1-\alpha P{θ^1θθ^2}=1α
      [ θ ^ 1 , θ ^ 2 ] [\hat \theta_1, \hat \theta_2] [θ^1,θ^2]就是 θ \theta θ 100 ( 1 − α ) % 100(1-\alpha)\% 100(1α)%的置信区间

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值