n个自变量的一阶线性偏微分方程(n≥2n\geq2n≥2)
n个自变量的一阶线性偏微分方程的一般形式为
∑j=1nbj∂u∂xj+cu=f(7)
\sum_{j=1}^nb_j\frac{\partial u}{\partial x_j}+cu=f \tag{7}
j=1∑nbj∂xj∂u+cu=f(7)
其中,bj=bj(x1,x2,...,xn),j=1,2,...,n,c=c(x1,x2,..,xn),f=f(x1,x2,...,xn)b_j=b_j(x_1,x_2,...,x_n),j=1,2,...,n,c=c(x_1,x_2,..,x_n),f=f(x_1,x_2,...,x_n)bj=bj(x1,x2,...,xn),j=1,2,...,n,c=c(x1,x2,..,xn),f=f(x1,x2,...,xn)是已知的区域D⊂RnD\subset \bold R^nD⊂Rn上的连续函数。
与n−2n-2n−2时一样,先来求解相应的齐次方程
∑j=1nbj∂φ∂xi=0(8)
\sum_{j=1}^nb_j\frac{\partial \varphi}{\partial x_i}=0 \tag{8}
j=1∑nbj∂xi∂φ=0(8)
为此,引入特征方程组
dx1b1=dx2b2=⋅⋅⋅=dxnbn(9)
\frac{ dx_1}{b_1}=\frac{dx_2}{b_2}=···=\frac{dx_n}{b_n} \tag{9}
b1dx1=b2dx2=⋅⋅⋅=bndxn(9)
如选定变量x1,x2,...,xnx_1,x_2,...,x_nx1,x2,...,xn中的某一个(如xax_axa)作为自变量,特征方程(9)是n-1个一阶常微分方程dxjdxn=bjbn(j=1,2,...,n−1)\frac{dx_j}{dx_n}=\frac{b_j}{b_n}(j=1,2,...,n-1)dxndxj=bnbj(j=1,2,...,n−1)组成的方程组,等价于一个n-1阶的常微分方程。它的解是n维空间中的曲线,称此积分曲线为一阶线性偏微分方程(7)的特征曲线。
如果引入参数t,特征方程组(9)可改写成
dxjdt=bj(x1,x2,...,xn),j=1,2,...,n
\frac{dx_j}{dt}=b_j(x_1,x_2,...,x_n),\quad j=1,2,...,n
dtdxj=bj(x1,x2,...,xn),j=1,2,...,n
积分曲线可表示为Γ:{xj=xj(t),j=1,2,...,n}\Gamma:\{x_j=x_j(t), \quad j=1,2,...,n\}Γ:{xj=xj(t),j=1,2,...,n}。如果能将特征方程组(9)中的某些方程凑成一个全微分形式的方程dφ(x1,x2,...,xn)=0d\varphi(x_1,x_2,...,x_n)=0dφ(x1,x2,...,xn)=0,则积分得到的关系式φ(x1,x2,...,xn)=h\varphi(x_1,x_2,...,x_n)=hφ(x1,x2,...,xn)=h(常数)称为常微分方程组(9)的一个首次积分。由常微分方程理论,一个n-1阶常微分方程存在且最多存在n-1个相互独立的首次积分。这n-1个独立的首次积分φj(x1,x2,...,xn)=hj(j=1,2,...,n−1)\varphi_j(x_1,x_2,...,x_n)=h_j(j=1,2,...,n-1)φj(x1,x2,...,xn)=hj(j=1,2,...,n−1)的联立即以隐函数的形式给出了(9)式的隐式通解(积分曲线族)。当n=2时,特征方程(9)只有一个独立的首次积分,即为积分曲线族。类似于n=2的情形,偏微分方程(8)的解与特征方程组(9)的首次积分之间有确定的关系。
定理:若φ(x1,x2,...,xn)=h\varphi(x_1,x_2,...,x_n)=hφ(x1,x2,...,xn)=h是特征方程组(9)在D⊂RnD\subset \bold R^nD⊂Rn内的一个首次积分,则ξ=φ(x1,x2,...,xn)\xi=\varphi(x_1,x_2,...,x_n)ξ=φ(x1,x2,...,xn)是一阶线性偏微分方程(8)在D上的一个解。
证明:设φ(x1,x2,...,xn)=h\varphi(x_1,x_2,...,x_n)=hφ(x1,x2,...,xn)=h是特殊方程组(9)的一个首次积分,则沿着(9)式的任一条积分曲线Γ:{xj=xj(t),j=1,2,...,n}\Gamma:\{x_j=x_j(t),j=1,2,...,n\}Γ:{xj=xj(t),j=1,2,...,n}有
dφ(x1(t),x2(t),...,xn(t))=0
d\varphi(x_1(t),x_2(t),...,x_n(t))=0
dφ(x1(t),x2(t),...,xn(t))=0
即有
∂φ∂x1dx1dt+∂φ∂x2dx2dt+⋅⋅⋅+∂φ∂xndxndt=b1∂φ∂x1+b2∂φ∂x2+⋅⋅⋅+bn∂φ∂xn=0
\frac{\partial \varphi}{\partial x_1}\frac{dx_1}{dt}+\frac{\partial \varphi}{\partial x_2}\frac{dx_2}{dt}+···+ \frac{\partial \varphi}{\partial x_n}\frac{d x_n}{dt}=b_1\frac{\partial \varphi}{\partial x_1}+b_2\frac{\partial \varphi}{\partial x_2}+···+b_n\frac{\partial \varphi}{\partial x_n}=0
∂x1∂φdtdx1+∂x2∂φdtdx2+⋅⋅⋅+∂xn∂φdtdxn=b1∂x1∂φ+b2∂x2∂φ+⋅⋅⋅+bn∂xn∂φ=0
由于过D内任一点有且仅有一条积分曲线,上式对于D内任一点成立,故ξ=φ(x1,x2⋅⋅⋅,xn)\xi=\varphi(x_1,x_2···,x_n)ξ=φ(x1,x2⋅⋅⋅,xn)是偏微分方程(8)在D上的解。
现在,求解一阶线性偏微分方程(7)。
由上述定理知,如果找到特征方程组(9)的n-1个独立的首次积分φj(x1,x2,⋅⋅⋅,xn)=hj(j=1,2,⋅⋅⋅,n−1)\varphi_j(x_1,x_2,···,x_n)=h_j(j=1,2,···,n-1)φj(x1,x2,⋅⋅⋅,xn)=hj(j=1,2,⋅⋅⋅,n−1)作自变量的变量代换
{ξj=φj(x1,x2,⋅⋅⋅,xn),j=1,2,⋅⋅⋅,n−1ξn=φn(x1,x2,⋅⋅⋅,xn)(10)
\begin{cases}
\xi_j=\varphi_j(x_1,x_2,···,x_n),\quad j=1,2,···,n-1 \\
\xi_n=\varphi_n(x_1,x_2,···,x_n)
\end{cases} \tag{10}
{ξj=φj(x1,x2,⋅⋅⋅,xn),j=1,2,⋅⋅⋅,n−1ξn=φn(x1,x2,⋅⋅⋅,xn)(10)
其中,φn(x1,x2,⋅⋅⋅,xn)\varphi_n(x_1,x_2,···,x_n)φn(x1,x2,⋅⋅⋅,xn)任取,使在D上
J(φ1,φ2,⋅⋅⋅,φn)=∂(φ1,φ2,⋅⋅⋅,φn)∂(x1,x2,⋅⋅⋅,xn)=∣∂φ1∂x1∂φ2∂x2⋯∂φn∂xn∂φ2∂x1∂φ2∂x2⋯∂φn∂x2⋮⋮⋱⋮∂φn∂x1∂φn∂x2⋯∂φn∂xn∣≠0
J(\varphi_1,\varphi_2,···,\varphi_n)=\frac{\partial(\varphi_1,\varphi_2,···,\varphi_n)}{\partial(x_1,x_2,···,x_n)}=
\begin{vmatrix}
\frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} & \cdots & \frac{\partial \varphi_n}{\partial x_n} \\
\frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} &
\cdots & \frac{\partial \varphi_n}{\partial x_2} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \varphi_n}{\partial x_1} & \frac{\partial \varphi_n}{\partial x_2} & \cdots & \frac{\partial \varphi_n}{\partial x_n}
\end{vmatrix} \neq 0
J(φ1,φ2,⋅⋅⋅,φn)=∂(x1,x2,⋅⋅⋅,xn)∂(φ1,φ2,⋅⋅⋅,φn)=∣∣∣∣∣∣∣∣∣∣∂x1∂φ1∂x1∂φ2⋮∂x1∂φn∂x2∂φ2∂x2∂φ2⋮∂x2∂φn⋯⋯⋱⋯∂xn∂φn∂x2∂φn⋮∂xn∂φn∣∣∣∣∣∣∣∣∣∣=0
代入(7),由链式法则得
∑j=1nbj∂u∂xj=∑j=1nbj(∑k=1n∂φk∂xj∂u∂ξk)=∑k=1n(∑j=1nbj∂φk∂xi)∂u∂ξk
\sum_{j=1}^n b_j\frac{\partial u}{\partial x_j}=\sum_{j=1}^nb_j(\sum_{k=1}^n\frac{\partial \varphi_k}{\partial x_j}\frac{\partial u}{\partial \xi_k})=\sum_{k=1}^n(\sum_{j=1}^nb_j\frac{\partial \varphi_k}{\partial x_i})\frac{\partial u}{\partial \xi_k}
j=1∑nbj∂xj∂u=j=1∑nbj(k=1∑n∂xj∂φk∂ξk∂u)=k=1∑n(j=1∑nbj∂xi∂φk)∂ξk∂u
由定理1知,当k=1,2,⋅⋅⋅,n−1k=1,2,···,n-1k=1,2,⋅⋅⋅,n−1时,有∑j=1nbj∂φk∂xj=,u=u(x1,⋅⋅⋅,xn)\sum_{j=1}^nb_j\frac{\partial \varphi_k}{\partial x_j}=, u=u(x_1,···,x_n)∑j=1nbj∂xj∂φk=,u=u(x1,⋅⋅⋅,xn)的方程(7)变成u=u(ξ1,ξ2,⋅⋅⋅,ξn)u=u(\xi_1,\xi_2,···,\xi_n)u=u(ξ1,ξ2,⋅⋅⋅,ξn)的方程
(∑j=1nbj∂φn∂xj)∂u∂ξn+cu=f(11)
(\sum_{j=1}^nb_j\frac{\partial \varphi_n}{\partial x_j})\frac{\partial u}{\partial \xi_n}+cu=f \tag{11}
(j=1∑nbj∂xj∂φn)∂ξn∂u+cu=f(11)
对ξn\xi_nξn积分,可得(11)式的通解。再代会原来的自变量(x1,x2,⋅⋅⋅,xn)(x_1,x_2,···,x_n)(x1,x2,⋅⋅⋅,xn),便得原方程(7)的通解。
特别地,当c(x1,x2,⋅⋅⋅,xn)=f(x1,x2,⋅⋅⋅,xn)≡0c(x_1,x_2,···,x_n)=f(x_1,x_2,···,x_n)\equiv 0c(x1,x2,⋅⋅⋅,xn)=f(x1,x2,⋅⋅⋅,xn)≡0时,方程(7)即为方程(8),变量代换(10)式后的新方程为
∂u∂ξn=0
\frac{\partial u}{\partial \xi_n}=0
∂ξn∂u=0
积分得通解
u=g(ξ1,ξ2,⋅⋅⋅,ξn−1)=g(φ1(x1,x2,⋅⋅⋅,xn),φ2(x1,x2,⋅⋅⋅xn),⋅⋅⋅,φn−1(x1,x2,⋅⋅⋅,xn)),
u=g(\xi_1,\xi_2,···,\xi_{n-1})=g(\varphi_1(x_1,x_2,···,x_n),\varphi_2(x_1,x_2,···x_n),···,\varphi_{n-1}(x_1,x_2,···,x_n)),
u=g(ξ1,ξ2,⋅⋅⋅,ξn−1)=g(φ1(x1,x2,⋅⋅⋅,xn),φ2(x1,x2,⋅⋅⋅xn),⋅⋅⋅,φn−1(x1,x2,⋅⋅⋅,xn)),
其中为任意n−1n-1n−1元C1C^1C1函数。
如果再给出未知函数在n维空间的一条曲线(非特征线)上的值,定出函数g,可得到特解。遗憾的是,一般而言,实际找出常微分方程的首次积分和确定函数关系g并非易事。
例1:求解初值问题
{x∂u∂x+y∂u∂y+z∂u∂z=0u∣z=1=xy
\begin{cases}
\sqrt{x}\frac{\partial u}{\partial x}+\sqrt{y}\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=0 \\
u|_{z=1}=xy
\end{cases}
{x∂x∂u+y∂y∂u+z∂z∂u=0u∣z=1=xy
解:特征方程为
dxx=dyu=dzz
\frac{dx}{\sqrt x}=\frac{dy}{\sqrt u}=\frac{dz}{z}
xdx=udy=zdz
有两个独立的首次积分x−y=c1\sqrt{x}-\sqrt{y}=c_1x−y=c1和2y−lnz=c22\sqrt{y}-lnz=c_22y−lnz=c2,故齐次方程的通解为
u=g(x−y,2u−lnz)
u=g(\sqrt x-\sqrt y,2\sqrt u-lnz)
u=g(x−y,2u−lnz)
代入初始条件
u∣x=1=g(x−y,2y)=xy
u|_{x=1}=g(\sqrt x-\sqrt y,2\sqrt y)=xy
u∣x=1=g(x−y,2y)=xy
为了确定函数g,不妨令p=x−yp=\sqrt x-\sqrt yp=x−y和q=2yq=2\sqrt yq=2y,解得
y=14q2,x=(p+12q)2
y=\frac{1}{4}q^2,\quad x=(p+\frac{1}{2}q)^2
y=41q2,x=(p+21q)2
故
g(p,q)=14q2(p+12q)2
g(p,q)=\frac{1}{4}q^2(p+\frac{1}{2}q)^2
g(p,q)=41q2(p+21q)2
上述定解问题的解为
u=(y−12lnz)2(x−12lnz)2
u=(\sqrt y-\frac{1}{2}lnz)^2(\sqrt x-\frac{1}{2}lnz)^2
u=(y−21lnz)2(x−21lnz)2
例2:求解初值问题
{∂u∂t=x∂u∂x+y∂u∂y+u+xyu∣t=0=φ(x,y)
\begin{cases}
\frac{\partial u}{\partial t}=x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+u+xy \\
u|_{t=0}=\varphi(x,y)
\end{cases}
{∂t∂u=x∂x∂u+y∂y∂u+u+xyu∣t=0=φ(x,y)
解:特征方程为
dt1=−dxx=−dyy
\frac{dt}{1}=-\frac{dx}{x}=-\frac{dy}{y}
1dt=−xdx=−ydy
积分得首次积分xet=c1,yet=c2xe^t=c_1,ye^t=c_2xet=c1,yet=c2。作变量代换
ξ=xet,η=yet,τ=t
\xi=xe^t,\quad \eta=ye^t, \quad \tau=t
ξ=xet,η=yet,τ=t
方程变为一阶常微分方程
∂u∂τ=u(ξ,η,τ)+ξηe−2τ
\frac{\partial u}{\partial \tau}=u(\xi,\eta,\tau)+\xi \eta e^{-2\tau}
∂τ∂u=u(ξ,η,τ)+ξηe−2τ
积分得通解
u=eτ[∫ξηe−2τ⋅e−τdτ+g(ξ,η)]=−13ξη−2τ+g(ξ,η)eτ=−13xy+g(xet,yet)et
u=e^{\tau}[\int \xi \eta e^{-2\tau}·e^{-\tau}d\tau+g(\xi,\eta)]\\
=-\frac{1}{3}\xi \eta^{-2\tau}+g(\xi,\eta)e^{\tau}=-\frac{1}{3}xy+g(xe^t,ye^t)e^t
u=eτ[∫ξηe−2τ⋅e−τdτ+g(ξ,η)]=−31ξη−2τ+g(ξ,η)eτ=−31xy+g(xet,yet)et
代入初始条件
u∣t=0=−13xy+g(x,y)=φ(x,y)g(x,y)=13xy+φ(x,y)
u|_{t=0}=-\frac{1}{3}xy+g(x,y)=\varphi(x,y) \\
g(x,y)=\frac{1}{3}xy+\varphi(x,y)
u∣t=0=−31xy+g(x,y)=φ(x,y)g(x,y)=31xy+φ(x,y)
得该定解问题的解
u=−13xy+et[13xye2t+φ(xet,yet)]
u=-\frac{1}{3}xy+e^t[\frac{1}{3}xye^{2t}+\varphi(xe^t,ye^t)]
u=−31xy+et[31xye2t+φ(xet,yet)]