一阶线性偏微分方程通解法和特征线法(二)| n个自变量情况 | 偏微分方程(八)

n个自变量的一阶线性偏微分方程( n ≥ 2 n\geq2 n2

n个自变量的一阶线性偏微分方程的一般形式为
∑ j = 1 n b j ∂ u ∂ x j + c u = f (7) \sum_{j=1}^nb_j\frac{\partial u}{\partial x_j}+cu=f \tag{7} j=1nbjxju+cu=f(7)
其中, b j = b j ( x 1 , x 2 , . . . , x n ) , j = 1 , 2 , . . . , n , c = c ( x 1 , x 2 , . . , x n ) , f = f ( x 1 , x 2 , . . . , x n ) b_j=b_j(x_1,x_2,...,x_n),j=1,2,...,n,c=c(x_1,x_2,..,x_n),f=f(x_1,x_2,...,x_n) bj=bj(x1,x2,...,xn),j=1,2,...,n,c=c(x1,x2,..,xn),f=f(x1,x2,...,xn)是已知的区域 D ⊂ R n D\subset \bold R^n DRn上的连续函数。

n − 2 n-2 n2时一样,先来求解相应的齐次方程
∑ j = 1 n b j ∂ φ ∂ x i = 0 (8) \sum_{j=1}^nb_j\frac{\partial \varphi}{\partial x_i}=0 \tag{8} j=1nbjxiφ=0(8)
为此,引入特征方程组
d x 1 b 1 = d x 2 b 2 = ⋅ ⋅ ⋅ = d x n b n (9) \frac{ dx_1}{b_1}=\frac{dx_2}{b_2}=···=\frac{dx_n}{b_n} \tag{9} b1dx1=b2dx2==bndxn(9)
如选定变量 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn中的某一个(如 x a x_a xa)作为自变量,特征方程(9)是n-1个一阶常微分方程 d x j d x n = b j b n ( j = 1 , 2 , . . . , n − 1 ) \frac{dx_j}{dx_n}=\frac{b_j}{b_n}(j=1,2,...,n-1) dxndxj=bnbj(j=1,2,...,n1)组成的方程组,等价于一个n-1阶的常微分方程。它的解是n维空间中的曲线,称此积分曲线为一阶线性偏微分方程(7)的特征曲线。

如果引入参数t,特征方程组(9)可改写成
d x j d t = b j ( x 1 , x 2 , . . . , x n ) , j = 1 , 2 , . . . , n \frac{dx_j}{dt}=b_j(x_1,x_2,...,x_n),\quad j=1,2,...,n dtdxj=bj(x1,x2,...,xn),j=1,2,...,n
积分曲线可表示为 Γ : { x j = x j ( t ) , j = 1 , 2 , . . . , n } \Gamma:\{x_j=x_j(t), \quad j=1,2,...,n\} Γ:{xj=xj(t),j=1,2,...,n}。如果能将特征方程组(9)中的某些方程凑成一个全微分形式的方程 d φ ( x 1 , x 2 , . . . , x n ) = 0 d\varphi(x_1,x_2,...,x_n)=0 dφ(x1,x2,...,xn)=0,则积分得到的关系式 φ ( x 1 , x 2 , . . . , x n ) = h \varphi(x_1,x_2,...,x_n)=h φ(x1,x2,...,xn)=h(常数)称为常微分方程组(9)的一个首次积分。由常微分方程理论,一个n-1阶常微分方程存在且最多存在n-1个相互独立的首次积分。这n-1个独立的首次积分 φ j ( x 1 , x 2 , . . . , x n ) = h j ( j = 1 , 2 , . . . , n − 1 ) \varphi_j(x_1,x_2,...,x_n)=h_j(j=1,2,...,n-1) φj(x1,x2,...,xn)=hj(j=1,2,...,n1)的联立即以隐函数的形式给出了(9)式的隐式通解(积分曲线族)。当n=2时,特征方程(9)只有一个独立的首次积分,即为积分曲线族。类似于n=2的情形,偏微分方程(8)的解与特征方程组(9)的首次积分之间有确定的关系。

定理:若 φ ( x 1 , x 2 , . . . , x n ) = h \varphi(x_1,x_2,...,x_n)=h φ(x1,x2,...,xn)=h是特征方程组(9)在 D ⊂ R n D\subset \bold R^n DRn内的一个首次积分,则 ξ = φ ( x 1 , x 2 , . . . , x n ) \xi=\varphi(x_1,x_2,...,x_n) ξ=φ(x1,x2,...,xn)是一阶线性偏微分方程(8)在D上的一个解。

证明:设 φ ( x 1 , x 2 , . . . , x n ) = h \varphi(x_1,x_2,...,x_n)=h φ(x1,x2,...,xn)=h是特殊方程组(9)的一个首次积分,则沿着(9)式的任一条积分曲线 Γ : { x j = x j ( t ) , j = 1 , 2 , . . . , n } \Gamma:\{x_j=x_j(t),j=1,2,...,n\} Γ:{xj=xj(t),j=1,2,...,n}
d φ ( x 1 ( t ) , x 2 ( t ) , . . . , x n ( t ) ) = 0 d\varphi(x_1(t),x_2(t),...,x_n(t))=0 dφ(x1(t),x2(t),...,xn(t))=0
即有
∂ φ ∂ x 1 d x 1 d t + ∂ φ ∂ x 2 d x 2 d t + ⋅ ⋅ ⋅ + ∂ φ ∂ x n d x n d t = b 1 ∂ φ ∂ x 1 + b 2 ∂ φ ∂ x 2 + ⋅ ⋅ ⋅ + b n ∂ φ ∂ x n = 0 \frac{\partial \varphi}{\partial x_1}\frac{dx_1}{dt}+\frac{\partial \varphi}{\partial x_2}\frac{dx_2}{dt}+···+ \frac{\partial \varphi}{\partial x_n}\frac{d x_n}{dt}=b_1\frac{\partial \varphi}{\partial x_1}+b_2\frac{\partial \varphi}{\partial x_2}+···+b_n\frac{\partial \varphi}{\partial x_n}=0 x1φdtdx1+x2φdtdx2++xnφdtdxn=b1x1φ+b2x2φ++bnxnφ=0
由于过D内任一点有且仅有一条积分曲线,上式对于D内任一点成立,故 ξ = φ ( x 1 , x 2 ⋅ ⋅ ⋅ , x n ) \xi=\varphi(x_1,x_2···,x_n) ξ=φ(x1,x2,xn)是偏微分方程(8)在D上的解。

现在,求解一阶线性偏微分方程(7)。

由上述定理知,如果找到特征方程组(9)的n-1个独立的首次积分 φ j ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) = h j ( j = 1 , 2 , ⋅ ⋅ ⋅ , n − 1 ) \varphi_j(x_1,x_2,···,x_n)=h_j(j=1,2,···,n-1) φj(x1,x2,,xn)=hj(j=1,2,,n1)作自变量的变量代换
{ ξ j = φ j ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) , j = 1 , 2 , ⋅ ⋅ ⋅ , n − 1 ξ n = φ n ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) (10) \begin{cases} \xi_j=\varphi_j(x_1,x_2,···,x_n),\quad j=1,2,···,n-1 \\ \xi_n=\varphi_n(x_1,x_2,···,x_n) \end{cases} \tag{10} {ξj=φj(x1,x2,,xn),j=1,2,,n1ξn=φn(x1,x2,,xn)(10)
其中, φ n ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) \varphi_n(x_1,x_2,···,x_n) φn(x1,x2,,xn)任取,使在D上
J ( φ 1 , φ 2 , ⋅ ⋅ ⋅ , φ n ) = ∂ ( φ 1 , φ 2 , ⋅ ⋅ ⋅ , φ n ) ∂ ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) = ∣ ∂ φ 1 ∂ x 1 ∂ φ 2 ∂ x 2 ⋯ ∂ φ n ∂ x n ∂ φ 2 ∂ x 1 ∂ φ 2 ∂ x 2 ⋯ ∂ φ n ∂ x 2 ⋮ ⋮ ⋱ ⋮ ∂ φ n ∂ x 1 ∂ φ n ∂ x 2 ⋯ ∂ φ n ∂ x n ∣ ≠ 0 J(\varphi_1,\varphi_2,···,\varphi_n)=\frac{\partial(\varphi_1,\varphi_2,···,\varphi_n)}{\partial(x_1,x_2,···,x_n)}= \begin{vmatrix} \frac{\partial \varphi_1}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} & \cdots & \frac{\partial \varphi_n}{\partial x_n} \\ \frac{\partial \varphi_2}{\partial x_1} & \frac{\partial \varphi_2}{\partial x_2} & \cdots & \frac{\partial \varphi_n}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \varphi_n}{\partial x_1} & \frac{\partial \varphi_n}{\partial x_2} & \cdots & \frac{\partial \varphi_n}{\partial x_n} \end{vmatrix} \neq 0 J(φ1,φ2,,φn)=(x1,x2,,xn)(φ1,φ2,,φn)=x1φ1x1φ2x1φnx2φ2x2φ2x2φnxnφnx2φnxnφn=0
代入(7),由链式法则得
∑ j = 1 n b j ∂ u ∂ x j = ∑ j = 1 n b j ( ∑ k = 1 n ∂ φ k ∂ x j ∂ u ∂ ξ k ) = ∑ k = 1 n ( ∑ j = 1 n b j ∂ φ k ∂ x i ) ∂ u ∂ ξ k \sum_{j=1}^n b_j\frac{\partial u}{\partial x_j}=\sum_{j=1}^nb_j(\sum_{k=1}^n\frac{\partial \varphi_k}{\partial x_j}\frac{\partial u}{\partial \xi_k})=\sum_{k=1}^n(\sum_{j=1}^nb_j\frac{\partial \varphi_k}{\partial x_i})\frac{\partial u}{\partial \xi_k} j=1nbjxju=j=1nbj(k=1nxjφkξku)=k=1n(j=1nbjxiφk)ξku
由定理1知,当 k = 1 , 2 , ⋅ ⋅ ⋅ , n − 1 k=1,2,···,n-1 k=1,2,,n1时,有 ∑ j = 1 n b j ∂ φ k ∂ x j = , u = u ( x 1 , ⋅ ⋅ ⋅ , x n ) \sum_{j=1}^nb_j\frac{\partial \varphi_k}{\partial x_j}=, u=u(x_1,···,x_n) j=1nbjxjφk=,u=u(x1,,xn)的方程(7)变成 u = u ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) u=u(\xi_1,\xi_2,···,\xi_n) u=u(ξ1,ξ2,,ξn)的方程
( ∑ j = 1 n b j ∂ φ n ∂ x j ) ∂ u ∂ ξ n + c u = f (11) (\sum_{j=1}^nb_j\frac{\partial \varphi_n}{\partial x_j})\frac{\partial u}{\partial \xi_n}+cu=f \tag{11} (j=1nbjxjφn)ξnu+cu=f(11)
ξ n \xi_n ξn积分,可得(11)式的通解。再代会原来的自变量 ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) (x_1,x_2,···,x_n) (x1,x2,,xn),便得原方程(7)的通解。

特别地,当 c ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) = f ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) ≡ 0 c(x_1,x_2,···,x_n)=f(x_1,x_2,···,x_n)\equiv 0 c(x1,x2,,xn)=f(x1,x2,,xn)0时,方程(7)即为方程(8),变量代换(10)式后的新方程为
∂ u ∂ ξ n = 0 \frac{\partial u}{\partial \xi_n}=0 ξnu=0
积分得通解
u = g ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n − 1 ) = g ( φ 1 ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) , φ 2 ( x 1 , x 2 , ⋅ ⋅ ⋅ x n ) , ⋅ ⋅ ⋅ , φ n − 1 ( x 1 , x 2 , ⋅ ⋅ ⋅ , x n ) ) , u=g(\xi_1,\xi_2,···,\xi_{n-1})=g(\varphi_1(x_1,x_2,···,x_n),\varphi_2(x_1,x_2,···x_n),···,\varphi_{n-1}(x_1,x_2,···,x_n)), u=g(ξ1,ξ2,,ξn1)=g(φ1(x1,x2,,xn),φ2(x1,x2,xn),,φn1(x1,x2,,xn)),
其中为任意 n − 1 n-1 n1 C 1 C^1 C1函数。

如果再给出未知函数在n维空间的一条曲线(非特征线)上的值,定出函数g,可得到特解。遗憾的是,一般而言,实际找出常微分方程的首次积分和确定函数关系g并非易事。

例1:求解初值问题
{ x ∂ u ∂ x + y ∂ u ∂ y + z ∂ u ∂ z = 0 u ∣ z = 1 = x y \begin{cases} \sqrt{x}\frac{\partial u}{\partial x}+\sqrt{y}\frac{\partial u}{\partial y}+z\frac{\partial u}{\partial z}=0 \\ u|_{z=1}=xy \end{cases} {x xu+y yu+zzu=0uz=1=xy
:特征方程为
d x x = d y u = d z z \frac{dx}{\sqrt x}=\frac{dy}{\sqrt u}=\frac{dz}{z} x dx=u dy=zdz
有两个独立的首次积分 x − y = c 1 \sqrt{x}-\sqrt{y}=c_1 x y =c1 2 y − l n z = c 2 2\sqrt{y}-lnz=c_2 2y lnz=c2,故齐次方程的通解为
u = g ( x − y , 2 u − l n z ) u=g(\sqrt x-\sqrt y,2\sqrt u-lnz) u=g(x y ,2u lnz)
代入初始条件
u ∣ x = 1 = g ( x − y , 2 y ) = x y u|_{x=1}=g(\sqrt x-\sqrt y,2\sqrt y)=xy ux=1=g(x y ,2y )=xy
为了确定函数g,不妨令 p = x − y p=\sqrt x-\sqrt y p=x y q = 2 y q=2\sqrt y q=2y ,解得
y = 1 4 q 2 , x = ( p + 1 2 q ) 2 y=\frac{1}{4}q^2,\quad x=(p+\frac{1}{2}q)^2 y=41q2,x=(p+21q)2

g ( p , q ) = 1 4 q 2 ( p + 1 2 q ) 2 g(p,q)=\frac{1}{4}q^2(p+\frac{1}{2}q)^2 g(p,q)=41q2(p+21q)2
上述定解问题的解为
u = ( y − 1 2 l n z ) 2 ( x − 1 2 l n z ) 2 u=(\sqrt y-\frac{1}{2}lnz)^2(\sqrt x-\frac{1}{2}lnz)^2 u=(y 21lnz)2(x 21lnz)2
例2:求解初值问题
{ ∂ u ∂ t = x ∂ u ∂ x + y ∂ u ∂ y + u + x y u ∣ t = 0 = φ ( x , y ) \begin{cases} \frac{\partial u}{\partial t}=x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+u+xy \\ u|_{t=0}=\varphi(x,y) \end{cases} {tu=xxu+yyu+u+xyut=0=φ(x,y)
:特征方程为
d t 1 = − d x x = − d y y \frac{dt}{1}=-\frac{dx}{x}=-\frac{dy}{y} 1dt=xdx=ydy
积分得首次积分 x e t = c 1 , y e t = c 2 xe^t=c_1,ye^t=c_2 xet=c1,yet=c2。作变量代换
ξ = x e t , η = y e t , τ = t \xi=xe^t,\quad \eta=ye^t, \quad \tau=t ξ=xet,η=yet,τ=t
方程变为一阶常微分方程
∂ u ∂ τ = u ( ξ , η , τ ) + ξ η e − 2 τ \frac{\partial u}{\partial \tau}=u(\xi,\eta,\tau)+\xi \eta e^{-2\tau} τu=u(ξ,η,τ)+ξηe2τ
积分得通解
u = e τ [ ∫ ξ η e − 2 τ ⋅ e − τ d τ + g ( ξ , η ) ] = − 1 3 ξ η − 2 τ + g ( ξ , η ) e τ = − 1 3 x y + g ( x e t , y e t ) e t u=e^{\tau}[\int \xi \eta e^{-2\tau}·e^{-\tau}d\tau+g(\xi,\eta)]\\ =-\frac{1}{3}\xi \eta^{-2\tau}+g(\xi,\eta)e^{\tau}=-\frac{1}{3}xy+g(xe^t,ye^t)e^t u=eτ[ξηe2τeτdτ+g(ξ,η)]=31ξη2τ+g(ξ,η)eτ=31xy+g(xet,yet)et
代入初始条件
u ∣ t = 0 = − 1 3 x y + g ( x , y ) = φ ( x , y ) g ( x , y ) = 1 3 x y + φ ( x , y ) u|_{t=0}=-\frac{1}{3}xy+g(x,y)=\varphi(x,y) \\ g(x,y)=\frac{1}{3}xy+\varphi(x,y) ut=0=31xy+g(x,y)=φ(x,y)g(x,y)=31xy+φ(x,y)
得该定解问题的解
u = − 1 3 x y + e t [ 1 3 x y e 2 t + φ ( x e t , y e t ) ] u=-\frac{1}{3}xy+e^t[\frac{1}{3}xye^{2t}+\varphi(xe^t,ye^t)] u=31xy+et[31xye2t+φ(xet,yet)]

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
假设我们要求解如下的一阶线性微分方程组: dx/dt = f1(x,y,t) dy/dt = f2(x,y,t) 其中,f1、f2是一些已知的非线性函数,而x、y是未知函数,t是自变量。 采用欧拉法求解该方程组的步骤如下: 1. 设定初值条件:x(0) = x0,y(0) = y0。 2. 设定时间步长:delta_t。 3. 对于每个时间步长,计算x和y的新值: x(i+1) = x(i) + delta_t * f1(x(i),y(i),t(i)) y(i+1) = y(i) + delta_t * f2(x(i),y(i),t(i)) 其中,i表示当前时间步数,i+1表示下一个时间步数。 4. 重复步骤3,直到达到所需的终止时间。 下面是一个matlab程序示例,用欧拉法求解一阶线性微分方程组: ``` % 定义非线性函数f1和f2 f1 = @(x,y,t) x + y * sin(t); f2 = @(x,y,t) y + x * cos(t); % 设定初值条件和时间步长 x0 = 1; y0 = 2; delta_t = 0.1; t_end = 10; % 计算总步数 n = ceil(t_end / delta_t); % 初始化x和y的数组 x = zeros(n, 1); y = zeros(n, 1); % 将初值条件赋给x和y的第一个元素 x(1) = x0; y(1) = y0; % 循环求解微分方程组 for i = 1:n-1 x(i+1) = x(i) + delta_t * f1(x(i), y(i), (i-1)*delta_t); y(i+1) = y(i) + delta_t * f2(x(i), y(i), (i-1)*delta_t); end % 绘制x和y随时间的变化曲线 t = linspace(0, t_end, n); plot(t, x, 'r-', t, y, 'b-'); legend('x', 'y'); xlabel('t'); ylabel('x, y'); ``` 需要注意的是,欧拉法是一种一阶数值解法,其精度较低,当时间步长越小时,误差越小,但计算量也越大。因此,在实际应用中,需要根据问题的特点选择合适的数值解法和时间步长。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值