如果泛定方程或边界条件出现非齐次项,则不能直接用分离变量法。
2.3.1 齐次边界条件下非齐次发展方程的混合问题
例1:两端固定弦的强迫振动
{
∂
2
u
∂
t
2
−
a
2
∂
2
u
∂
x
2
=
f
(
t
,
x
)
,
t
>
0
,
0
<
x
<
l
(
1
a
)
u
∣
x
=
0
=
u
∣
x
=
l
=
0
(
1
b
)
u
∣
t
=
0
=
φ
(
x
)
,
∂
u
∂
t
∣
t
=
0
=
ψ
(
x
)
(
1
c
)
\begin{cases} \frac{\partial^2 u}{\partial t^2}-a^2\frac{\partial^2u}{\partial x^2}=f(t,x),\quad t>0, 0<x<l \quad (1a)\\ u|_{x=0}=u|_{x=l}=0 \quad (1b)\\ u|_{t=0}=\varphi(x),\quad \frac{\partial u}{\partial t}|_{t=0}=\psi(x) \quad (1c) \end{cases}
⎩⎪⎨⎪⎧∂t2∂2u−a2∂x2∂2u=f(t,x),t>0,0<x<l(1a)u∣x=0=u∣x=l=0(1b)u∣t=0=φ(x),∂t∂u∣t=0=ψ(x)(1c)
这是一个齐次边界条件下的非齐次发展方程的混合问题,非齐次项
f
(
t
,
x
)
f(t,x)
f(t,x)反映了弦身上外力的作用。
f
(
t
,
x
)
≡
0
f(t,x)\equiv 0
f(t,x)≡0时,即为齐次问题。求解非齐次问题的基本思想是通过方程“齐次化”,把非齐次化问题转化为相应的齐次问题式。
1. 特解法
由叠加原理,找非齐次方程(1a)的一个特解 v ( t , x ) v(t,x) v(t,x),可把方程齐次化。为了保持边界条件的齐次性,还应要求 v ( t , x ) v(t,x) v(t,x)满足齐次边界条件(1b)式。对于比较特殊的 f ( t , x ) f(t,x) f(t,x),这样的特解 v ( t , x ) v(t,x) v(t,x)有可能找到。
比如, f ( t , x ) = A x f(t,x)=Ax f(t,x)=Ax,A为常数。不失一般性,不妨设 φ ( x ) ≡ 0 , ψ ( x ) ≡ 0 , l = 1 \varphi(x)\equiv 0,\psi(x)\equiv 0,l=1 φ(x)≡0,ψ(x)≡0,l=1。此时的特解可取为一元函数 v ( x ) v(x) v(x)。
现令
u
(
t
,
x
)
=
v
(
x
)
+
w
(
t
,
x
)
u(t,x)=v(x)+w(t,x)
u(t,x)=v(x)+w(t,x),其中,
v
(
x
)
v(x)
v(x)满足常微分方程边值问题
{
−
a
2
v
′
′
(
x
)
=
A
x
v
(
0
)
=
v
(
1
)
=
0
\begin{cases} -a^2v''(x)=Ax \\ v(0)=v(1)=0 \end{cases}
{−a2v′′(x)=Axv(0)=v(1)=0
积分得方程的通解
v
(
x
)
=
−
A
a
2
(
1
6
x
3
+
C
x
+
D
)
v(x)=-\frac{A}{a^2}(\frac{1}{6}x^3+Cx+D)
v(x)=−a2A(61x3+Cx+D)
由边界条件定出积分常数
D
=
0
,
C
=
−
1
6
D=0,\quad C=-\frac{1}{6}
D=0,C=−61
得
v
(
x
)
=
A
6
a
2
(
x
−
x
3
)
v(x)=\frac{A}{6a^2}(x-x^3)
v(x)=6a2A(x−x3)
根据叠加原理,
w
(
t
,
x
)
w(t,x)
w(t,x)满足定解问题
{
w
t
t
−
a
2
w
x
x
=
0
,
w
∣
x
=
0
=
w
∣
x
=
1
=
0
,
w
∣
t
=
0
=
−
v
(
x
)
=
A
6
a
2
(
x
3
−
x
)
,
w
t
∣
t
=
0
=
0
\begin{cases} w_{tt}-a^2w_{xx}=0 ,\\ w|_{x=0}=w|_{x=1}=0, \\ w|_{t=0}=-v(x)=\frac{A}{6a^2}(x^3-x), \quad w_t|_{t=0}=0 \end{cases}
⎩⎪⎨⎪⎧wtt−a2wxx=0,w∣x=0=w∣x=1=0,w∣t=0=−v(x)=6a2A(x3−x),wt∣t=0=0
这是齐次方程齐次边界条件的问题,可直接用之前的结论得
w
(
t
,
x
)
=
2
A
a
2
π
3
=
∑
n
=
1
+
∞
(
−
1
)
n
n
3
c
o
s
a
n
π
t
s
i
n
n
π
x
w(t,x)=\frac{2A}{a^2\pi^3}=\sum_{n=1}^{+\infty}\frac{(-1)^n}{n^3}cos\,an\pi t\,sin\,n\pi x
w(t,x)=a2π32A=n=1∑+∞n3(−1)ncosanπtsinnπx
2. 冲量原理法
对无穷长弦的纯强迫振动问题
{
∂
2
u
∂
t
2
−
a
2
∂
2
u
∂
x
2
=
f
(
t
,
x
)
,
t
>
0
,
−
∞
<
x
<
+
∞
,
u
∣
t
=
0
=
0
,
∂
u
∂
t
∣
t
=
0
=
0
\begin{cases} \frac{\partial^2u}{\partial t^2}-a^2\frac{\partial^2u}{\partial x^2}=f(t,x),\quad t>0,-\infty<x<+\infty, \\ u|_{t=0}=0,\quad \frac{\partial u}{\partial t}|_{t=0}=0 \end{cases}
{∂t2∂2u−a2∂x2∂2u=f(t,x),t>0,−∞<x<+∞,u∣t=0=0,∂t∂u∣t=0=0
通过冲量原理,把非齐次方程齐次初始条件的问题转化为齐次方程非齐次初始条件的问题。注意到两端固定弦的强迫振动(1)式中的边界条件是齐次的,可直接验证对有限区间的混合问题,冲量原理仍然成立。
首先,令(1)式的解
u
=
u
1
+
u
2
u=u_1+u_2
u=u1+u2,其中,
u
1
,
u
2
u_1,u_2
u1,u2分别是混合问题
{
∂
2
u
1
∂
t
2
−
a
2
∂
2
u
1
∂
x
2
=
f
(
t
,
x
)
,
t
>
0
,
0
<
x
<
l
u
1
∣
x
=
0
=
u
1
∣
x
=
l
=
0
u
1
∣
t
=
0
=
0
,
∂
u
1
∂
t
∣
t
=
0
=
0
(2)
\begin{cases} \frac{\partial^2u_1}{\partial t^2}-a^2\frac{\partial^2u_1}{\partial x^2}=f(t,x), \quad t>0,0<x<l \\ u_1|_{x=0}=u_1|_{x=l}=0 \\ u_1|_{t=0}=0,\quad \frac{\partial u_1}{\partial t}|_{t=0}=0 \end{cases} \tag{2}
⎩⎪⎨⎪⎧∂t2∂2u1−a2∂x2∂2u1=f(t,x),t>0,0<x<lu1∣x=0=u1∣x=l=0u1∣t=0=0,∂t∂u1∣t=0=0(2)
和
{
∂
2
u
2
∂
t
2
−
a
2
∂
2
u
2
∂
x
2
=
0
,
t
>
0
,
0
<
x
<
l
u
1
∣
x
=
0
=
u
1
∣
x
=
l
=
0
u
1
∣
t
=
0
=
φ
(
x
)
,
∂
u
1
∂
t
∣
t
=
0
=
ψ
(
x
)
\begin{cases} \frac{\partial^2u_2}{\partial t^2}-a^2\frac{\partial^2u_2}{\partial x^2}=0, \quad t>0,0<x<l \\ u_1|_{x=0}=u_1|_{x=l}=0 \\ u_1|_{t=0}=\varphi(x),\quad \frac{\partial u_1}{\partial t}|_{t=0}=\psi(x) \end{cases}
⎩⎪⎨⎪⎧∂t2∂2u2−a2∂x2∂2u2=0,t>0,0<x<lu1∣x=0=u1∣x=l=0u1∣t=0=φ(x),∂t∂u1∣t=0=ψ(x)
解。由之前求解的公式易得
u
2
(
t
,
x
)
=
∑
n
=
1
+
∞
(
φ
n
c
o
s
a
n
π
l
t
+
l
a
n
π
ψ
n
s
i
n
a
n
π
l
t
)
s
i
n
n
π
l
x
u_2(t,x)=\sum_{n=1}^{+\infty}(\varphi_ncos\frac{an\pi}{l}t+\frac{l}{an\pi}\psi_n sin\frac{an\pi}{l}t)sin\frac{n\pi}{l}x
u2(t,x)=n=1∑+∞(φncoslanπt+anπlψnsinlanπt)sinlnπx
其中,
{
φ
n
}
,
{
ψ
n
}
\{\varphi_n\},\{\psi_n\}
{φn},{ψn}分别为
φ
(
x
)
,
ψ
(
x
)
\varphi(x),\psi(x)
φ(x),ψ(x)关于
{
s
i
n
n
π
l
x
}
\{sin\frac{n\pi}{l}x\}
{sinlnπx}的Fourier正弦展开系数。
对于(2)式,由冲量原理,先求出相应的齐次方程混合问题
{
∂
2
w
∂
t
2
−
a
2
∂
2
w
∂
x
2
=
0
,
t
>
τ
>
0
,
0
<
x
<
l
w
∣
x
=
0
=
w
∣
x
=
l
=
0
u
1
∣
t
=
τ
=
0
,
∂
u
1
∂
t
∣
t
=
τ
=
ψ
(
x
)
(3)
\begin{cases} \frac{\partial^2w}{\partial t^2}-a^2\frac{\partial^2w}{\partial x^2}=0, \quad t>\tau>0,0<x<l \\ w|_{x=0}=w|_{x=l}=0 \\ u_1|_{t=\tau}=0,\quad \frac{\partial u_1}{\partial t}|_{t=\tau}=\psi(x) \end{cases} \tag{3}
⎩⎪⎨⎪⎧∂t2∂2w−a2∂x2∂2w=0,t>τ>0,0<x<lw∣x=0=w∣x=l=0u1∣t=τ=0,∂t∂u1∣t=τ=ψ(x)(3)
的解
w
(
t
,
x
;
τ
)
w(t,x;\tau)
w(t,x;τ),则
u
1
(
t
,
x
)
=
∫
0
t
w
(
t
,
w
;
τ
)
d
r
u_1(t,x)=\int_0^tw(t,w;\tau)dr
u1(t,x)=∫0tw(t,w;τ)dr
是(2)式的解。
在定解问题(3)式中作平移
t
′
=
t
−
τ
t'=t-\tau
t′=t−τ,利用之前的齐次方程的解,有
w
(
t
,
x
;
r
)
=
∑
n
=
1
+
i
n
f
t
y
l
a
n
π
f
n
(
τ
)
s
i
n
a
n
π
l
(
t
−
τ
)
s
i
n
n
π
l
x
w(t,x;r)=\sum_{n=1}^{+infty}\frac{l}{an\pi}f_n(\tau)sin\frac{an\pi}{l}(t-\tau)sin\frac{n\pi}{l}x
w(t,x;r)=n=1∑+inftyanπlfn(τ)sinlanπ(t−τ)sinlnπx
其中
f
n
(
τ
)
=
2
l
∫
0
l
f
(
τ
,
ξ
)
s
i
n
n
π
l
ξ
d
ξ
f_n(\tau)=\frac{2}{l}\int_0^lf(\tau,\xi)sin\frac{n\pi}{l}\xi d\xi
fn(τ)=l2∫0lf(τ,ξ)sinlnπξdξ
故
u
1
(
t
,
x
)
=
∑
n
=
1
+
∞
l
a
n
π
∫
0
t
f
n
(
τ
)
s
i
n
a
n
π
l
(
t
−
τ
)
d
τ
s
i
n
n
π
l
x
u_1(t,x)=\sum_{n=1}^{+\infty}\frac{l}{an\pi}\int_0^tf_n(\tau)sin\frac{an\pi}{l}(t-\tau)d\tau \, sin\frac{n\pi}{l}x
u1(t,x)=n=1∑+∞anπl∫0tfn(τ)sinlanπ(t−τ)dτsinlnπx
非齐次定解问题(1)式的解
u
(
t
,
x
)
=
u
1
(
t
,
x
)
+
u
2
(
t
,
x
)
u(t,x)=u_1(t,x)+u_2(t,x)
u(t,x)=u1(t,x)+u2(t,x)
由齐次化原理可知,对一般的非齐次发展方程的混合问题
{
L
t
u
+
L
x
u
=
f
(
t
,
x
)
,
t
>
0
,
a
<
x
<
b
(
a
1
u
−
β
1
∂
u
∂
x
)
∣
x
=
a
=
0
,
(
a
2
u
+
β
2
∂
u
∂
x
)
∣
x
=
b
=
0
u
∣
t
=
0
=
0
,
∂
u
∂
t
∣
t
=
0
=
0
(4)
\begin{cases} L_tu+L_xu=f(t,x),\quad t>0,a<x<b \\ (a_1u-\beta_1\frac{\partial u}{\partial x})|_{x=a}=0,\quad (a_2u+\beta_2\frac{\partial u}{\partial x})|_{x=b}=0 \\ u|_{t=0}=0,\quad \frac{\partial u}{\partial t}|_{t=0}=0 \end{cases} \tag{4}
⎩⎪⎨⎪⎧Ltu+Lxu=f(t,x),t>0,a<x<b(a1u−β1∂x∂u)∣x=a=0,(a2u+β2∂x∂u)∣x=b=0u∣t=0=0,∂t∂u∣t=0=0(4)
其中,
L
t
,
L
x
L_t,L_x
Lt,Lx分别为关于
t
,
x
t,x
t,x的二阶线性常微分算子。当
L
t
L_t
Lt中最高阶导数的系数为1时,先用分离变量法求出齐次方程的混合问题
{
L
t
w
+
L
x
w
=
0
,
t
>
0
,
a
<
x
<
b
(
a
1
w
−
β
1
∂
w
∂
x
)
∣
x
=
a
=
0
,
(
a
2
w
+
β
2
∂
w
∂
x
)
∣
x
=
b
=
0
w
∣
t
=
0
=
0
,
∂
w
∂
t
∣
t
=
0
=
f
(
τ
,
x
)
\begin{cases} L_tw+L_xw=0,\quad t>0,a<x<b \\ (a_1w-\beta_1\frac{\partial w}{\partial x})|_{x=a}=0,\quad (a_2w+\beta_2\frac{\partial w}{\partial x})|_{x=b}=0 \\ w|_{t=0}=0,\quad \frac{\partial w}{\partial t}|_{t=0}=f(\tau,x) \end{cases}
⎩⎪⎨⎪⎧Ltw+Lxw=0,t>0,a<x<b(a1w−β1∂x∂w)∣x=a=0,(a2w+β2∂x∂w)∣x=b=0w∣t=0=0,∂t∂w∣t=0=f(τ,x)
的解
w
(
t
,
x
;
τ
)
w(t,x;\tau)
w(t,x;τ),则
u
(
t
,
x
)
=
∫
0
t
w
(
t
,
x
;
r
)
d
r
u(t,x)=\int_0^t w(t,x;r)dr
u(t,x)=∫0tw(t,x;r)dr
是非齐次方程混合问题(4)的解。
3. Fourier 展开法
分离变量法就是Fourier展开法,从Fourier展开观点来看,方程增加非齐次项并不会增加原则性困难。
对于例1,在齐次情形(
f
(
t
,
x
)
=
0
f(t,x)=0
f(t,x)=0),用分离变量法得到了固有值和固有函数系
λ
n
=
(
n
π
l
)
2
,
X
n
(
x
)
=
s
i
n
n
π
l
x
,
n
=
1
,
2
,
⋯
\lambda_n=(\frac{n\pi}{l})^2, \quad X_n(x)=sin\frac{n\pi}{l}x,\quad n=1,2,\cdots
λn=(lnπ)2,Xn(x)=sinlnπx,n=1,2,⋯
由于固有函数系
{
s
i
n
n
π
l
x
,
n
=
1
,
2
,
⋯
}
\{sin\frac{n\pi}{l}x,n=1,2,\cdots\}
{sinlnπx,n=1,2,⋯}是满足齐次边界条件(1b)式的函数空间里的完备正交函数系,我们可把强迫振动问题(1)式的解
u
(
t
,
x
)
u(t,x)
u(t,x)按此固有函数系作Fourier正弦展开,设
u
(
t
,
x
)
=
∑
n
=
1
+
∞
T
n
(
t
)
s
i
n
n
π
l
x
u(t,x)=\sum_{n=1}^{+\infty}T_n(t)sin\frac{n\pi}{l}x
u(t,x)=n=1∑+∞Tn(t)sinlnπx
其中,展开系数
T
n
(
t
)
T_n(t)
Tn(t)待定。由叠加原理知,这样的
u
(
t
,
x
)
u(t,x)
u(t,x)一定满足齐次边界条件(1b)式,问题在于确定系数
T
n
(
t
)
T_n(t)
Tn(t),使这样的
u
(
t
,
x
)
u(t,x)
u(t,x)满足非齐次方程(1a)和初始条件(1c)式。为此,将问题(1)式中的已知函数
f
(
t
,
x
)
,
φ
(
x
)
f(t,x),\varphi(x)
f(t,x),φ(x)和
ψ
(
x
)
\psi(x)
ψ(x)都按固有函数系
{
s
i
n
n
π
l
x
}
\{sin\frac{n\pi}{l}x\}
{sinlnπx}作正弦展开
f
(
t
,
x
)
=
∑
n
=
1
+
∞
f
n
(
t
)
s
i
n
n
π
l
x
,
φ
(
x
)
=
∑
n
=
1
+
∞
φ
n
s
i
n
n
π
l
x
,
ψ
(
x
)
=
∑
n
=
1
+
∞
ψ
n
s
i
n
n
π
l
x
f(t,x)=\sum_{n=1}^{+\infty}f_n(t)sin\frac{n\pi}{l}x ,\\ \varphi(x)=\sum_{n=1}^{+\infty}\varphi_nsin\frac{n\pi}{l}x, \\ \psi(x)=\sum^{+\infty}_{n=1}\psi_nsin\frac{n\pi}{l}x
f(t,x)=n=1∑+∞fn(t)sinlnπx,φ(x)=n=1∑+∞φnsinlnπx,ψ(x)=n=1∑+∞ψnsinlnπx
其中,展开系数
f
n
(
t
)
=
2
l
∫
0
l
f
(
t
,
x
)
s
i
n
n
π
l
x
d
x
φ
n
=
2
l
∫
0
l
φ
(
x
)
s
i
n
n
π
l
x
d
x
ψ
n
=
2
l
∫
0
l
ψ
(
x
)
s
i
n
n
π
l
x
d
x
f_n(t)=\frac{2}{l}\int_0^lf(t,x)sin\frac{n\pi}{l}xdx \\ \varphi_n=\frac{2}{l}\int_0^l\varphi(x)sin\frac{n\pi}{l}xdx \\ \psi_n=\frac{2}{l}\int_0^l\psi(x)sin\frac{n\pi}{l}xdx
fn(t)=l2∫0lf(t,x)sinlnπxdxφn=l2∫0lφ(x)sinlnπxdxψn=l2∫0lψ(x)sinlnπxdx
把这些展式代入方程(1a)和初始条件(1c)式,得
∑
n
=
1
+
∞
T
n
′
′
(
t
)
s
i
n
n
π
l
x
−
a
2
∑
n
=
1
+
∞
T
n
(
t
)
(
s
i
n
n
π
l
x
)
′
′
=
∑
n
=
1
+
∞
T
n
′
′
(
t
)
s
i
n
n
π
l
x
+
a
2
∑
n
=
1
+
∞
(
n
π
l
)
2
T
n
(
t
)
s
i
n
n
π
l
x
=
∑
n
=
1
+
∞
f
n
(
t
)
s
i
n
n
π
l
x
\sum_{n=1}^{+\infty}T_n''(t)sin\frac{n\pi}{l}x-a^2\sum_{n=1}^{+\infty}T_n(t)(sin\frac{n\pi}{l}x)'' \\ =\sum_{n=1}^{+\infty}T_n''(t)sin\frac{n\pi}{l}x+a^2\sum_{n=1}^{+\infty}(\frac{n\pi}{l})^2T_n(t)sin\frac{n\pi}{l}x \\ =\sum_{n=1}^{+\infty}f_n(t)sin\frac{n\pi}{l}x
n=1∑+∞Tn′′(t)sinlnπx−a2n=1∑+∞Tn(t)(sinlnπx)′′=n=1∑+∞Tn′′(t)sinlnπx+a2n=1∑+∞(lnπ)2Tn(t)sinlnπx=n=1∑+∞fn(t)sinlnπx
∑ n = 1 + ∞ T n ( 0 ) s i n n π l x = ∑ n = 1 + ∞ φ n s i n n π l x , ∑ n = 1 + ∞ T n ′ ( 0 ) s i n n π l x = ∑ n = 1 + ∞ ψ n s i n n π l x \sum_{n=1}^{+\infty}T_n(0)sin\frac{n\pi}{l}x=\sum_{n=1}^{+\infty}\varphi_nsin\frac{n\pi}{l}x,\quad \sum_{n=1}^{+\infty}T_n'(0)sin\frac{n\pi}{l}x=\sum_{n=1}^{+\infty}\psi_nsin\frac{n\pi}{l}x n=1∑+∞Tn(0)sinlnπx=n=1∑+∞φnsinlnπx,n=1∑+∞Tn′(0)sinlnπx=n=1∑+∞ψnsinlnπx
由正弦展开的唯一性,两边比较系数得
T
n
(
t
)
T_n(t)
Tn(t)的初值问题
{
T
n
′
′
(
t
)
+
(
a
n
π
l
)
2
T
n
(
t
)
=
f
n
(
t
)
(
5
a
)
T
n
(
0
)
=
φ
n
,
T
n
′
(
0
)
=
ψ
n
(
5
b
)
\begin{cases} T_n''(t)+(\frac{an\pi}{l})^2T_n(t)=f_n(t) \quad (5a)\\ T_n(0)=\varphi_n,\quad T_n'(0)=\psi_n \quad \quad (5b) \end{cases}
{Tn′′(t)+(lanπ)2Tn(t)=fn(t)(5a)Tn(0)=φn,Tn′(0)=ψn(5b)
注意,能从方程(1a)中得到
T
n
(
t
)
T_n(t)
Tn(t)的方程(5a)是因为
X
n
(
x
)
=
s
i
n
n
π
l
x
X_n(x)=sin\frac{n\pi}{l}x
Xn(x)=sinlnπx满足方程
X
n
′
′
(
x
)
=
−
λ
n
X
n
(
x
)
X_n''(x)=-\lambda_nX_n(x)
Xn′′(x)=−λnXn(x)。与齐次方程情形不同的是,这里
T
n
(
t
)
T_n(t)
Tn(t)满足的常微分方程是非齐次的。
可用通解法或Laplace变换法求解初值问题(5)式,这里用通解法。方程(5a)式对应的齐次方程的基础解析
T
n
1
(
t
)
=
c
o
s
a
n
π
l
t
,
T
n
2
(
t
)
=
s
i
n
a
n
π
l
t
T_{n1}(t)=cos\frac{an\pi}{l}t,\quad T_{n2}(t)=sin\frac{an\pi}{l}t
Tn1(t)=coslanπt,Tn2(t)=sinlanπt
非齐次方程(5a)的一个特解
T
n
∗
(
t
)
=
∫
0
t
T
n
1
(
τ
)
T
n
2
(
t
)
−
T
n
1
(
t
)
T
n
2
(
τ
)
T
n
1
(
τ
)
T
n
2
′
(
τ
)
−
T
n
1
′
(
τ
)
T
n
2
(
τ
)
f
n
(
τ
)
d
τ
=
l
a
n
π
∫
0
t
s
i
n
a
n
π
l
(
t
−
τ
)
f
n
(
τ
)
d
τ
T_n^*(t)=\int_0^t\frac{T_{n1}(\tau)T_{n_2}(t)-T_{n1}(t)T_{n2}(\tau)}{T_{n1}(\tau)T'_{n2}(\tau)-T_{n_1}'(\tau)T_{n2}(\tau)}f_n(\tau)d\tau \\ =\frac{l}{an\pi}\int_0^tsin\frac{an\pi}{l}(t-\tau)f_n(\tau)d\tau
Tn∗(t)=∫0tTn1(τ)Tn2′(τ)−Tn1′(τ)Tn2(τ)Tn1(τ)Tn2(t)−Tn1(t)Tn2(τ)fn(τ)dτ=anπl∫0tsinlanπ(t−τ)fn(τ)dτ
方程(5a)的通解
T
n
(
t
)
=
C
n
c
o
s
a
n
π
l
t
+
D
n
s
i
n
a
n
π
l
t
+
l
a
n
π
∫
0
t
s
i
n
a
n
π
l
(
t
−
τ
)
f
n
(
τ
)
d
τ
T_n(t)=C_ncos\frac{an\pi}{l}t+D_nsin\frac{an\pi}{l}t+\frac{l}{an\pi}\int_0^tsin\frac{an\pi}{l}(t-\tau)f_n(\tau)d\tau
Tn(t)=Cncoslanπt+Dnsinlanπt+anπl∫0tsinlanπ(t−τ)fn(τ)dτ
代入初始条件(5b)式,定出
C
n
=
φ
n
C_n=\varphi_n
Cn=φn,
D
n
=
l
a
n
π
ψ
n
D_n=\frac{l}{an\pi}\psi_n
Dn=anπlψn,最后得两端固定弦的强迫振动的解
u
(
t
,
x
)
=
∑
n
=
1
+
∞
[
φ
n
c
o
s
a
n
π
l
t
+
l
a
n
π
ψ
n
s
i
n
a
n
π
l
t
+
l
a
n
π
∫
0
t
s
i
n
a
n
π
l
(
t
−
τ
)
f
n
(
τ
)
d
τ
]
s
i
n
n
π
l
x
u(t,x)=\sum_{n=1}^{+\infty}[\varphi_ncos\frac{an\pi}{l}t+\frac{l}{an\pi}\psi_nsin\frac{an\pi}{l}t+\frac{l}{an\pi}\int_0^tsin\frac{an\pi}{l}(t-\tau)f_n(\tau)d\tau]sin\frac{n\pi}{l}x
u(t,x)=n=1∑+∞[φncoslanπt+anπlψnsinlanπt+anπl∫0tsinlanπ(t−τ)fn(τ)dτ]sinlnπx
本例中采用的Fourier展开法,可用于一般的非齐次问题
L
t
u
+
L
x
u
=
f
(
t
,
x
)
,
t
>
0
,
a
<
x
<
b
(
6
a
)
(
a
1
u
−
β
1
∂
u
∂
x
)
∣
x
=
a
=
0
,
(
a
2
u
+
β
2
∂
u
∂
x
)
∣
x
=
b
=
0
,
(
6
b
)
u
∣
t
=
0
=
φ
(
x
)
,
∂
u
∂
t
∣
t
=
0
=
ψ
(
x
)
(
6
c
)
L_tu+L_xu=f(t,x),\quad t>0,a<x<b \quad (6a)\\ (a_1u-\beta_1\frac{\partial u}{\partial x})|_{x=a}=0,\quad (a_2u+\beta_2\frac{\partial u}{\partial x})|_{x=b}=0, \quad (6b)\\ u|_{t=0}=\varphi(x),\quad \frac{\partial u}{\partial t}|_{t=0}=\psi(x) \quad (6c)
Ltu+Lxu=f(t,x),t>0,a<x<b(6a)(a1u−β1∂x∂u)∣x=a=0,(a2u+β2∂x∂u)∣x=b=0,(6b)u∣t=0=φ(x),∂t∂u∣t=0=ψ(x)(6c)
其中,
L
t
,
L
x
L_t,L_x
Lt,Lx分别是关于
t
,
x
t,x
t,x的二阶线性常微分算子。
第一步:分离变量法,求出(6)式相应的齐次问题( f ( t , x ) = 0 f(t,x)=0 f(t,x)=0)的固有值问题,解出该问题相应的固有值 { λ n } \{\lambda_n\} {λn}及固有函数系 { X n ( x ) } \{X_n(x)\} {Xn(x)}。
第二步:据
S
−
L
S-L
S−L定理判断
{
X
n
(
x
)
}
\{X_n(x)\}
{Xn(x)}完备性,并将未知函数
u
(
t
,
x
)
u(t,x)
u(t,x)及已知函数
f
(
t
,
x
)
,
φ
(
x
)
f(t,x),\varphi(x)
f(t,x),φ(x)和
ψ
(
x
)
\psi(x)
ψ(x)按固有函数系
{
X
n
(
x
)
}
\{X_n(x)\}
{Xn(x)}作广义Fourier展开。
u
(
t
,
x
)
=
∑
n
T
n
(
t
)
X
n
(
x
)
,
f
(
t
,
x
)
=
∑
n
f
n
(
t
)
X
n
(
x
)
,
φ
(
x
)
=
∑
n
φ
n
X
n
(
x
)
,
ψ
(
x
)
=
∑
n
ψ
n
X
n
(
x
)
u(t,x)=\sum_nT_n(t)X_n(x),\\ f(t,x)=\sum_nf_n(t)X_n(x), \\ \varphi(x)=\sum_n\varphi_nX_n(x), \psi(x)=\sum_n\psi_nX_n(x)
u(t,x)=n∑Tn(t)Xn(x),f(t,x)=n∑fn(t)Xn(x),φ(x)=n∑φnXn(x),ψ(x)=n∑ψnXn(x)
代入方程(6a)及初始条件(6c)式,利用
L
x
X
n
(
x
)
=
−
λ
X
n
(
x
)
L_xX_n(x)=-\lambda X_n(x)
LxXn(x)=−λXn(x),得到未知函数
u
(
t
,
x
)
u(t,x)
u(t,x)的广义Fourier系数
T
n
(
t
)
T_n(t)
Tn(t)的初值问题
{
L
t
T
n
(
t
)
+
λ
n
T
n
(
t
)
=
f
n
(
t
)
T
n
(
0
)
=
φ
n
,
T
n
′
(
0
)
=
ψ
n
\begin{cases} L_tT_n(t)+\lambda_nT_n(t)=f_n(t)\\ T_n(0)=\varphi_n, \quad T_n'(0)=\psi_n \end{cases}
{LtTn(t)+λnTn(t)=fn(t)Tn(0)=φn,Tn′(0)=ψn
第三步:解此初值问题,确定
T
n
(
t
)
T_n(t)
Tn(t),给出
u
(
t
,
x
)
u(t,x)
u(t,x)的级数表达式。