弦的横振动方程的导出

来源于西电数模双创作业。

 题目:绝对柔软而均匀的弦线, 有一端固定在它本身重力的作用下, 此线处于铅垂的平衡位置, 试导出此线的微小横振动方程

目录

一、解答:一端固定的弦

1.泛定方程求解

2.边界条件求解

二、补充:两端固定的弦

1.物理模型

2.分析

(1)确定研究对象:

(2)物理问题的数学抽象:

3.研究建立方程

一、解答:一端固定的弦

1.泛定方程求解

如图,设弦长为$l$,弦的线密度为$\rho$,则x点处的张力T(x)为

$T(x)=\rho g(l-x)$

且T(x)的方向总是沿着弦在x点处的切线方向。以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段$(x,x+\Delta x)$,则弦段两端张力在u轴方向的投影分别为

\rho g(l-x)u_x\Big|_x

 \rho g\left [ l-\left ( x+\Delta x \right ) \right ]u_x\Big|_{x+\Delta x}

其中$u_x(x)$表示T(x)方向与x轴的夹角的正切值。又

$u_x\approx tg\theta=\frac{\partial u}{\partial x}$

于是得运动方程

$\rho\Delta xu_{tt}=\rho g[l-(x+\Delta x)]u_x\Big|_{x+\Delta x}-\rho g(l-x)u_x\Big|_x$

利用微分中值定理,消去,再令Δx→0得

$u_{tt}=g\frac{\partial}{\partial x}[(l-x)u_x]$

2.边界条件求解

在x=0处,弦线固定,所以u(0,t)=0
在x=l处,由于是自由端,其张力在y方向的分量为 0,即 u_x\left ( l,t \right )= 0

二、补充:两端固定的弦

1.物理模型

设有一根细长柔软的弦线,绷紧于A,B两点之间,在平衡位置AB附近产生振幅极为微小的横振动,求这弦上各点的运动规律。

2.分析

(1)确定研究对象:

设 u(x,t) 为弦位移,则u满足规律所求。为了研究u,在x位置处取Δx小段弦为研究对象。

(2)物理问题的数学抽象:

1)由于弦是“细长”的,所以ρ(x,t)=ρ(t)且忽略重力

2)由于弦“绷紧”于AB两点,这说明弦中各相邻部分之间有拉力即“张力”作用;由于弦是“柔软”的,所以相邻小段张力总是弦线的切线方向;

3)由于弦作“微小”的横向振动,故相邻点沿振动方向位移的差别很小,即 $|{u_x}| = |\frac{​{\partial u}}{​{\partial x}}| \ll 1$(无穷小量)($u_x^2 \approx 0$) 

3.研究建立方程

注意到在振动过程中,

\overset{\frown } {M_1M_2}= \int\limits_x^{x + \Delta x} {\sqrt {1 + {​{({u_x})}^2}} } dx \approx \int\limits_x^{x + \Delta x} {dx = \Delta x}

即这一小段的长度在振动过程中可以看作是不变的。因此,由胡克(Hooke)定律知张力和线度都不随 t 而变,即T(x,t)=T(x),ρ(t)=ρ。

分析任意段Δx受力。在x轴方向上,两端分别有-T_1\cos \alpha_1T_2\cos\alpha_2的张力分力。在y轴方向上,两端分别有-T_1\sin \alpha_1T_2\sin\alpha_2的张力分力;同时,受到外力F(x + {\eta _1}\Delta x,t)\Delta x的作用($0 < {\eta _1} \le 1$)。

由牛顿第二定律,得

${T_2}\cos {\alpha _2} - {T_1}\cos {\alpha _1} = 0$

${T_2}\sin {\alpha _2} - {T_1}\sin {\alpha _1} + F(x + {\eta _1}\Delta x,t)\Delta x = (\rho \Delta x){u_{tt}}(x + {\eta _2}\Delta x,t)$

由三角公式

$\sin \alpha = \frac{​{\tan \alpha }}{​{\sqrt {1 + {​{\tan }^2}\alpha } }} = \frac{​{​{u_x}}}{​{\sqrt {1 + {u_x}^2} }} \approx {u_x}$

可得:

$\left\{ \begin{array}{l} \sin {\alpha _1} \approx {u_x}(x,t),{\rm{ }}\cos {\alpha _1} = \sqrt {1 - {​{\sin }^2}{\alpha _1}} \approx 1\\ \sin {\alpha _2} = {u_x}(x + \Delta x,t),{\rm{ }}\cos {\alpha _2} = \sqrt {1 - {​{\sin }^2}{\alpha _2}} \approx 1 \end{array} \right.$

因此两个牛顿方程分别变为:

${T_1} = {T_2} = T$

$(\rho \Delta x){u_{tt}}(x + {\eta _2}\Delta x,t) = F(x + {\eta _1}\Delta x,t)\Delta x + T\left[ {​{u_x}(x + \Delta x,t) - {u_x}(x,t)} \right]$

整理得

${u_{tt}}(x + {\eta _2}\Delta x,t) = \frac{T}{\rho }\frac{​{​{u_x}(x + \Delta x,t) - {u_x}(x,t)}}{​{\Delta x}} + \frac{​{F(x + {\eta _1}\Delta x,t)}}{\rho }$

对上式两边取Δx→0 时的极限,得

{u_{tt}} = {a^2}{u_{xx}} + f(x,t)

即:弦的微小横振动方程是一维的波动方程,其中{a^2} = \frac{T}{\rho }表示振动在弦上的传播速度,f(x,t) = \frac{​{F(x,t)}}{\rho }称为力密度,表示t时刻作用于x处的单位质量上的横向外力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赭红色的锆石

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值