一般的非齐次混合问题 | 偏微分方程(二十二)

一般的非齐次混合问题

现在考虑一般的非齐次混合问题
{ L t u + L x u = f ( t , x ) , t > 0 , a < x < b ( α 1 u − β 1 ∂ u ∂ x ) ∣ x = a = g 1 ( t ) , ( a 2 u + β 2 ∂ u ∂ x ) ∣ x = b = g 2 ( t ) u ∣ t = 0 = φ ( x ) , ∂ u ∂ t ∣ t = 0 = ψ ( x ) \begin{cases} L_tu+L_xu=f(t,x), \quad t>0,a<x<b \\ (\alpha_1u-\beta_1\frac{\partial u}{\partial x})|_{x=a}=g_1(t),\quad (a_2u+\beta_2\frac{\partial u}{\partial x})|_{x=b}=g_2(t) \\ u|_{t=0}=\varphi(x), \quad \frac{\partial u}{\partial t}|_{t=0}=\psi(x) \end{cases} Ltu+Lxu=f(t,x),t>0,a<x<b(α1uβ1xu)x=a=g1(t),(a2u+β2xu)x=b=g2(t)ut=0=φ(x),tut=0=ψ(x)
边界条件出现非齐次项 g 1 ( t ) , g 2 ( t ) g_1(t),g_2(t) g1(t),g2(t),不能再用分离变量法(Fourier展开法)或冲量原理法求解,但是可以通过寻找满足非齐次边界条件的特解把边界条件齐次化。

v ( t , x ) v(t,x) v(t,x)满足非齐次边界条件
( a 1 v − β 1 ∂ v ∂ x ) ∣ x = a = g 1 ( t ) , ( a 2 v + β 2 ∂ v ∂ x ) ∣ x = b = g 2 ( t ) (a_1v-\beta_1\frac{\partial v}{\partial x})|_{x=a}=g_1(t),\quad (a_2v+\beta_2\frac{\partial v}{\partial x})|_{x=b}=g_2(t) (a1vβ1xv)x=a=g1(t),(a2v+β2xv)x=b=g2(t)
这里的 v ( t , x ) v(t,x) v(t,x)显然不唯一,最简单地,可取为x的线性函数
v ( t , x ) = A ( t ) x + B ( t ) v(t,x)=A(t)x+B(t) v(t,x)=A(t)x+B(t)
其中, A ( t ) , B ( t ) A(t),B(t) A(t),B(t)待定,将此 v ( t , x ) v(t,x) v(t,x)代入边界条件,整理得 A ( t ) , B ( t ) A(t),B(t) A(t),B(t)的线性方程组
{ ( α 1 a − β 1 ) A ( t ) + α 1 B ( t ) = g 1 ( t ) ( α 2 b + β 2 ) A ( t ) + α 2 B ( t ) = g 2 ( t ) \begin{cases} (\alpha_1a-\beta_1)A(t)+\alpha_1B(t)=g_1(t) \\ (\alpha_2b+\beta_2)A(t)+\alpha_2B(t)=g_2(t) \end{cases} {(α1aβ1)A(t)+α1B(t)=g1(t)(α2b+β2)A(t)+α2B(t)=g2(t)
解出 A ( t ) , B ( t ) A(t),B(t) A(t),B(t)便可得满足非齐次边界的 v ( t , x ) v(t,x) v(t,x)。若上述线性方程组无解,则可设 v ( t , x ) v(t,x) v(t,x)为x的二次函数。

找到这样的 v ( t , x ) v(t,x) v(t,x),令 u ( t , x ) = v ( t , x ) + w ( t , x ) u(t,x)=v(t,x)+w(t,x) u(t,x)=v(t,x)+w(t,x),由叠加原理知, w ( t , x ) w(t,x) w(t,x)满足非齐次方程齐次边界条件的定解问题
{ L t w + L x w = f ( t , x ) − L t v − L x v , t > 0 , a < x < b ( α 1 w − β 1 ∂ w ∂ x ) ∣ x = a = 0 , ( a 2 w + β 2 ∂ w ∂ x ) ∣ x = b = 0 w ∣ t = 0 = φ ( x ) − v ∣ t = 0 , ∂ w ∂ t ∣ t = 0 = ψ ( x ) − ∂ v ∂ t ∣ t = 0 \begin{cases} L_tw+L_xw=f(t,x)-L_tv-L_xv, \quad t>0,a<x<b \\ (\alpha_1w-\beta_1\frac{\partial w}{\partial x})|_{x=a}=0,\quad (a_2w+\beta_2\frac{\partial w}{\partial x})|_{x=b}=0 \\ w|_{t=0}=\varphi(x)-v|_{t=0}, \quad \frac{\partial w}{\partial t}|_{t=0}=\psi(x)-\frac{\partial v}{\partial t}|_{t=0} \end{cases} Ltw+Lxw=f(t,x)LtvLxv,t>0,a<x<b(α1wβ1xw)x=a=0,(a2w+β2xw)x=b=0wt=0=φ(x)vt=0,twt=0=ψ(x)tvt=0
这在齐次边界条件下非齐次发展方程的混合问题已解决。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
导热方程是一个描述物体内部热传递过程的偏微分方程。对于混合初边问题,我们需要考虑物体的初始温度分布和物体表面的热边界条件。其中,ftcs格式是一种数值解法,可以通过有限差分方法离散化空间和时间,从而得到原始偏微分方程的数值近似解。 首先,我们可以将导热方程表示为: ``` du/dt = k * d^2u/dx^2 ``` 其中,u是温度,t是时间,x是空间坐标,k是导热系数。 然后,我们将空间和时间分别离散化,使用坐标格点 u(i,j) 来表示 x=i*dx,t=j*dt 时刻的温度,根据ftcs格式可以得到如下的差分方程: ``` u(i, j+1) = u(i,j) + k*(dt/dx^2)*[ u(i+1,j) - 2*u(i,j) + u(i-1,j) ] ``` 此时我们的任务变为对初始条件和边界条件进行离散化。例如,初始温度分布可以表示为 u(i,0),热边界条件可以表示为在物体表面位置 j=0 (底部表面) 和 j=n (顶部表面) 时的温度值。这些条件可以以类似于下面的方式进行表示: ``` u(i,0) = f(i) # 初始温度分布 u(i,n) = g(i) # 顶部表面热边界条件 u(0,j) = h1(j) # 左侧表面热边界条件 u(m,j) = h2(j) # 右侧表面热边界条件 ``` 其中,m表示空间格点数,n表示时间步数,f(i)、g(i)、h1(j)和h2(j)是分别对应于初始温度分布、以及物体表面各个位置的热边界条件的函数。 最后,我们可以通过迭代计算 u(i,j) 的值,从而得到在不同时间步的温度分布。需要注意,在计算过程中需要使用适当的边界条件以避免出现数值不稳定的情况。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值