3 非齐次线性微分方程与无量纲化

0.引言

  本节研究常系数二阶线性方程右边加入非齐次项的情况。非齐次项包括指数函数,三角函数或多项式函数的情况。

1.求解步骤

  对于非齐次线性二阶ODE x ¨ + p ( t ) x ˙ + q ( t ) x = g ( t ) (1) \ddot{x}+p(t) \dot{x}+q(t) x=g(t)\tag{1} x¨+p(t)x˙+q(t)x=g(t)(1)

g ( t ) ≠ 0 g(t)\neq 0 g(t)=0,其求解分3步

  1. 求对应齐次方程通解 x h ( t ) = c 1 x 1 ( t ) + c 2 x 2 ( t ) x_{h}(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t) xh(t)=c1x1(t)+c2x2(t)
  2. 找到非齐次方程的一个特解 x p ( t ) x_{p}(t) xp(t)
  3. 则非齐次方程通解为 x ( t ) = x h ( t ) + x p ( t ) (2) x(t)=x_{h}(t)+x_{p}(t)\tag{2} x(t)=xh(t)+xp(t)(2)

2.求特解的方法

  求特解的方法为待定系数法,下面用例子来说明。
x ¨ − 3 x ˙ − 4 x = f ( x ) (3) \ddot{x}-3 \dot{x}-4 x=f(x)\tag{3} x¨3x˙4x=f(x)(3)

  1. f ( x ) f(x) f(x)指数函数,如 x ¨ − 3 x ˙ − 4 x = 3 e 2 t \ddot{x}-3 \dot{x}-4 x=3 e^{2 t} x¨3x˙4x=3e2t。则令特解为 x ( t ) = A e 2 t x(t)=A e^{2 t} x(t)=Ae2t
  2. f ( x ) f(x) f(x)三角函数,如 x ¨ − 3 x ˙ − 4 x = 2 sin ⁡ t \ddot{x}-3 \dot{x}-4 x=2 \sin t x¨3x˙4x=2sint,则令特解为 x ( t ) = A cos ⁡ t + B sin ⁡ t x(t)=A \cos t+B \sin t x(t)=Acost+Bsint
  3. f ( x ) f(x) f(x)多项式函数,如 x + x − 2 x = t 2 x+x-2 x=t^{2} x+x2x=t2,则令特解为 x ( t ) = A t 2 + B t + C x(t)=A t^{2}+B t+C x(t)=At2+Bt+C

3. 特殊情况

  如果非齐次项是齐次方程的一个解,则特解的形式在2节的基础上还需要乘 t t t
:由于特解中与 t t t相乘的部分 h ( t ) h(t) h(t)满足齐次方程。将特解代入(1)后,包含 t t t的项为 t ( h ¨ ( t ) + p ( t ) h ˙ ( t ) + q ( t ) t ) = 0 t(\ddot{h}(t)+p(t) \dot{h}{(t)}+q(t) t)=0 t(h¨(t)+p(t)h˙(t)+q(t)t)=0。因此结果不含有带 t t t的项。

4.应用

4.1 RLC电路


  各物理量满足 V C = q / C , V R = i R , V L = d i d t L V_{C}=q / C, \quad V_{R}=i R, \quad V_{L}=\frac{d i}{d t} L VC=q/C,VR=iR,VL=dtdiL

并且有 i = d q / d t i=d q / d t i=dq/dt。根据基尔霍夫定律,可得
L d 2 q d t 2 + R d q d t + 1 C q = E 0 cos ⁡ ω t (4) L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=\mathcal{E}_{0} \cos \omega t\tag{4} Ldt2d2q+Rdtdq+C1q=E0cosωt(4)

定义自然频率为 ω 0 = 1 / L C \omega_{0}=1 / \sqrt{L C} ω0=1/LC

4.1.1 无量纲化

  定义无量纲时间 τ \tau τ和电荷量 Q Q Q,
τ = ω 0 t , Q = ω 0 2 L E 0 q (5) \tau=\omega_{0} t, \quad Q=\frac{\omega_{0}^{2} L}{\mathcal{E}_{0}} q\tag{5} τ=ω0t,Q=E0ω02Lq(5)

则式(5)可化为 d 2 Q d τ 2 + α d Q d τ + Q = cos ⁡ β τ (6) \frac{d^{2} Q}{d \tau^{2}}+\alpha \frac{d Q}{d \tau}+Q=\cos \beta \tau\tag{6} dτ2d2Q+αdτdQ+Q=cosβτ(6)

其中, α \alpha α β \beta β被称为无量纲参数。
α = R L ω 0 , β = ω ω 0 (7) \alpha=\frac{R}{L \omega_{0}}, \quad \beta=\frac{\omega}{\omega_{0}}\tag{7} α=Lω0R,β=ω0ω(7)

  无量纲化,把式(4)中的五个参数 R , L , C , E 0  and  ω R, L, C, \mathcal{E}_{0} \text { and } \omega R,L,C,E0 and ω变成了式()中的两个无量纲参数 α \alpha α β \beta β
:

1.无量纲化后,函数,自变量,参数都没有量纲。
2.无量纲化的具体方法可以根据想要的形式,利用待定系数法把无量纲的函数和自变量设出来。

4.2 单摆运动

模型建立遵循以下步骤

  1. 写矢量式
  2. 选定坐标系(包括坐标原点和基矢量)
  3. 将矢量式在坐标系下展开
    方程如下:

m l θ ¨ + c l θ ˙ + m g sin ⁡ θ = F 0 cos ⁡ ω t (8) m l \ddot{\theta}+c l \dot{\theta}+m g \sin \theta=F_{0} \cos \omega t\tag{8} mlθ¨+clθ˙+mgsinθ=F0cosωt(8)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值