信号的相关分析 | 相关系数+相关函数+相关定理

信号的相关分析

在信号的分析中,有时需要对两个以上信号的相互关系进行研究。例如在通信系统、雷达系统,甚至控制系统中,发送端发出的信号波形是已知的,在接收端信号(或回拨信号)中,也必须判断是否存在由发送端发出的信号。困难在于接受端信号中即使包含了发送端发出的信号,也往往因各种原因产生了畸变。一个很自然的想法是用已知的发送波形去与畸变了的接受波形相比较,利用它们的相似或相依性作出判断,这就需要首先解决信号之间的相似或相依性的度量问题,这正是相关分析要解决的问题。

一、相关系数

参考信号的正交分解叙述,当用另一个信号 y ( t ) y(t) y(t)去近似一个信号 x ( t ) x(t) x(t)时, x ( t ) x(t) x(t)可表示为
x ( t ) = a x y y ( t ) + x e ( t ) x(t)=a_{xy}y(t)+x_e(t) x(t)=axyy(t)+xe(t)
式中, a x y a_{xy} axy为实系数; x e ( t ) x_e(t) xe(t)为近似误差信号。对于能量型信号 x ( t ) 、 y ( t ) x(t)、y(t) x(t)y(t),可得这种近似的误差信号能量为
ϵ = ∫ − ∞ ∞ x e 2 ( t ) d t = ∫ − ∞ ∞ [ x ( t ) − a x y y ( t ) ] 2 d t (1) \epsilon=\int_{-\infty}^{\infty}x^2_e(t)dt=\int_{-\infty}^{\infty}[x(t)-a_{xy}y(t)]^2dt \tag{1} ϵ=xe2(t)dt=[x(t)axyy(t)]2dt(1)
为求得使误差信号能量最小的 a x y a_{xy} axy值,必须使
∂ ϵ ∂ a x y = ∂ ∂ a x y { ∫ − ∞ ∞ [ x ( t ) − a x y y ( t ) ] 2 } d t = 0 \frac{\partial \epsilon}{\partial a_{xy}}=\frac{\partial}{\partial a_{xy}}\{\int_{-\infty}^{\infty}[x(t)-a_{xy}y(t)]^2\}dt=0 axyϵ=axy{[x(t)axyy(t)]2}dt=0
由此可求得用 y ( t ) y(t) y(t)表示的 x ( t ) x(t) x(t)的最佳系数 a x y a_{xy} axy,即
a x y = ∫ ∞ ∞ x ( t ) y ( t ) d t ∫ − ∞ ∞ y 2 ( t ) d t a_{xy}=\frac{\int_{\infty}^{\infty}x(t)y(t)dt}{\int_{-\infty}^{\infty}y^2(t)dt} axy=y2(t)dtx(t)y(t)dt
将其代入式(1),得到这种近似的最小误差信号分能量值为
ϵ m i n = ∫ − ∞ ∞ x 2 ( t ) d t − [ ∫ − ∞ ∞ x ( t ) y ( t ) d t ] 2 ∫ − ∞ ∞ y 2 ( t ) d t \epsilon_{min}=\int_{-\infty}^{\infty}x^2(t)dt-\frac{[\int_{-\infty}^\infty x(t)y(t)dt]^2}{\int_{-\infty}^{\infty}y^2(t)dt} ϵmin=x2(t)dty2(t)dt[x(t)y(t)dt]2
式中右边第一项表示了原信号 x ( t ) x(t) x(t)的能量。如将上式用原信号能量归一化为相对误差,则有
ϵ ‾ m i n = ϵ m i n ∫ − ∞ ∞ x 2 ( t ) d t = 1 − [ ∫ − ∞ ∞ x ( t ) y ( t ) d t ] 2 ∫ − ∞ ∞ x 2 ( t ) d t ∫ − ∞ ∞ y 2 ( t ) d t \overline \epsilon_{min}=\frac{\epsilon_{min}}{\int_{-\infty}^{\infty}x^2(t)dt}=1-\frac{[\int_{-\infty}^\infty x(t)y(t)dt]^2}{\int_{-\infty}^{\infty}x^2(t)dt \int_{-\infty}^\infty y^2(t)dt} ϵmin=x2(t)dtϵmin=1x2(t)dty2(t)dt[x(t)y(t)dt]2

ρ x y = ∫ − ∞ ∞ x ( t ) y ( t ) d t ∫ − ∞ ∞ x 2 ( t ) d t ∫ − ∞ ∞ y 2 ( t ) d t (2) \rho_{xy}=\frac{\int_{-\infty}^\infty x(t)y(t)dt}{\sqrt{\int_{-\infty}^{\infty}x^2(t)dt} \sqrt{\int_{-\infty}^\infty y^2(t)dt}} \tag{2} ρxy=x2(t)dt y2(t)dt x(t)y(t)dt(2)
则相对误差可写为
ϵ ‾ m i n = ϵ m i n ∫ − ∞ ∞ x 2 ( t ) d t = 1 − ρ x y 2 \overline \epsilon_{min}=\frac{\epsilon_{min}}{\int_{-\infty}^{\infty}x^2(t)dt}=1- \rho_{xy}^2 ϵmin=x2(t)dtϵmin=1ρxy2

通常把 ρ x y \rho_{xy} ρxy称为信号 y ( t ) y(t) y(t) x ( t ) x(t) x(t)的相关系数,在 x ( t ) x(t) x(t) y ( t ) y(t) y(t)都是是信号的情况下, ρ x y \rho_{xy} ρxy为一实数;此外,根据积分的施瓦兹不等式
∣ ∫ − ∞ ∞ x ( t ) y ( t ) d t ∣ 2 ≤ ∫ − ∞ ∞ x 2 ( t ) d t ∫ ∞ ∞ y 2 ( t ) d t |\int_{-\infty}^{\infty}x(t)y(t)dt|^2\leq \int_{-\infty}^{\infty}x^2(t)dt\int_{\infty}^{\infty}y^2(t)dt x(t)y(t)dt2x2(t)dty2(t)dt
不难证明有
∣ ρ x y ∣ ≤ 1 |\rho_{xy}|\leq 1 ρxy1
相关系数 ρ x y \rho_{xy} ρxy可以用来描述两个信号波形的相似或相依程度。当 x ( t ) = a x y y ( t ) x(t)=a_{xy}y(t) x(t)=axyy(t),且 a x y > 0 a_{xy}>0 axy>0时,表示信号 x ( t ) x(t) x(t) y ( t ) y(t) y(t)的波形相同,仅有幅度上的放大或缩小,这时由式(2)可求得 ρ x y = 1 \rho_{xy}=1 ρxy=1;当 x ( t ) = a x y y ( t ) x(t)=a_{xy}y(t) x(t)=axyy(t),且 a x y < 0 a_{xy}<0 axy<0时,表示两个信号波形相同,极性相反,幅度上也有放缩,这时由式(2)可求得 ρ x y = − 1 \rho_{xy}=-1 ρxy=1。这就是说, ∣ ρ x y = 1 ∣ |\rho_{xy}=1| ρxy=1表明了两个信号的波形是相同的,一个信号 x ( t ) x(t) x(t)可以用另一个信号 y ( t ) y(t) y(t)乘以一个非零实数来表示,这种表示的相对误差 ϵ ‾ m i n \overline \epsilon_{min} ϵmin为0,表明这种表示时精确的。两个信号间的这种关系可以认为它们是完全线性相关的。相反,若相关系数 ρ x y = 0 \rho_{xy}=0 ρxy=0,它等价于式(4)的分子项为0,即 ∫ − ∞ ∞ x ( t ) y ( t ) d t = 0 \int_{-\infty}^{\infty}x(t)y(t)dt=0 x(t)y(t)dt=0,表明信号 x ( t ) x(t) x(t) y ( t ) y(t) y(t) ( − ∞ , ∞ ) (-\infty,\infty) (,)区间上相互正交,用一个信号 y ( t ) y(t) y(t)表示另一个信号 x ( t ) x(t) x(t)的相对误差 ϵ ‾ m i n \overline \epsilon_{min} ϵmin 100 % 100 \% 100%,或者说,两个信号的波形毫无相似之处,无法用一个信号去近似表示另一个信号,也可以说两个信号是线性无关的。一般情况下, 0 < ∣ ρ x y ∣ < 1 0<|\rho_{xy}|<1 0<ρxy<1,这时,既不能用一个信号精确地表示另一个信号,也不相互正交,而可以用一个信号近似地表示另一个信号,其近似程度就用 ∣ ρ x y ∣ |\rho_{xy}| ρxy来描述, ∣ ρ x y ∣ |\rho_{xy}| ρxy越接近于1,表示近似程度愈高,近似误差愈小,反之, ∣ ρ x y ∣ |\rho_{xy}| ρxy越接近于0,表示近似误差愈大。

以上描述是针对能量型信号的,对于功率型信号,相关系数应为
ρ x y = l i m T → ∞ 1 2 T ∫ − T T x ( t ) y ( t ) d t l i m T → ∞ 1 2 T ∫ − T T x 2 ( t ) d t l i m T → ∞ 1 2 T ∫ − T T y 2 ( t ) d t (3) \rho_{xy}=\frac{lim_{T\to \infty}\frac{1}{2T}\int_{-T}^{T}x(t)y(t)dt}{\sqrt{lim_{T\to \infty}\frac{1}{2T}\int_{-T}^Tx^2(t)dt}\sqrt{lim_{T\to \infty}\frac{1}{2T}\int_{-T}^Ty^2(t)dt}} \tag{3} ρxy=limT2T1TTx2(t)dt limT2T1TTy2(t)dt limT2T1TTx(t)y(t)dt(3)
这时描述信号近似的量实际上成了均方误差。对于周期为 2 T 2T 2T的周期信号 x ( t ) 、 y ( t ) x(t)、y(t) x(t)y(t),式(3)中的极限符号可以去掉。

两个实信号的相关系数及其特性可推广到一般的复信号,此时 a x y a_{xy} axy和相关系数 ρ x y \rho_{xy} ρxy应为复数。

二、相关函数

相关系数 ρ x y \rho_{xy} ρxy定量地描述了两个信号 x ( t ) x(t) x(t) y ( t ) y(t) y(t)之间的相似或相依关系,但它有很大的局限性。一个典型的例子如下图所示,图中 y ( t ) = x ( t − T ) y(t)=x(t-T) y(t)=x(tT),它是持续时间为T的信号 x ( t ) x(t) x(t)延时了T的结果,从波形看,两个信号有最紧密的关系,因为它们的波形是完全一致的,但是如果按照式(2)来求它们的相关系数,则有 ρ x y = 0 \rho_{xy}=0 ρxy=0,因此,用 ρ x y \rho_{xy} ρxy来描述两个信号相似性,显然有其局限性或不合理性,问题出在相关系数 ρ x y = 0 \rho_{xy}=0 ρxy=0仅仅描述了在时间轴上两个固定信号的相关特性。为了表示其中一个信号在时间轴上平移后两个信号的相关特性,必须引入一个新的度量量,它必定是关于其中一个信号在时间轴上的平移量的函数,即
R x y ( τ ) = ∫ − ∞ ∞ x ( t ) y ( t + τ ) d t = ∫ − ∞ ∞ x ( t − τ ) y ( t ) d t (4) R_{xy}(\tau)=\int_{-\infty}^{\infty}x(t)y(t+\tau)dt=\int_{-\infty}^{\infty}x(t-\tau)y(t)dt \tag{4} Rxy(τ)=x(t)y(t+τ)dt=x(tτ)y(t)dt(4)
在这里插入图片描述
R x y ( τ ) R_{xy}(\tau) Rxy(τ)称为两个信号 x ( t ) x(t) x(t) y ( t ) y(t) y(t)的互相关函数。当然还可以定义另一种互相关函数 R y x ( τ ) R_{yx}(\tau) Ryx(τ)
R y x ( τ ) = ∫ − ∞ ∞ y ( t ) x ( t + τ ) d t = ∫ − ∞ ∞ y ( t − τ ) x ( t ) d t R_{yx}(\tau)=\int_{-\infty}^{\infty}y(t)x(t+\tau)dt=\int_{-\infty}^{\infty}y(t-\tau)x(t)dt Ryx(τ)=y(t)x(t+τ)dt=y(tτ)x(t)dt
显然,这两种定义的互相关函数并不相等,互相关函数下标x和y的先后次序,表示了一个信号相对于另一信号的平移方向,故有
R y x ( τ ) = R x y ( − τ ) R_{yx}(\tau)=R_{xy}(-\tau) Ryx(τ)=Rxy(τ)
可见 R y x ( τ ) R_{yx}(\tau) Ryx(τ)仅仅是 R x y ( τ ) R_{xy}(\tau) Rxy(τ)对纵坐标轴的翻转,它们对度量 x ( t ) x(t) x(t) y ( t ) y(t) y(t)的相似性或相依程度具有完全相同的信息。

y ( t ) = x ( t ) y(t)=x(t) y(t)=x(t),则表示了信号 x ( t ) x(t) x(t)与其自身的相互关系,称为信号 x ( t ) x(t) x(t)的自相关函数,为
R ( x x ) ( τ ) = ∫ − ∞ ∞ x ( t ) x ( t + τ ) d t = ∫ − ∞ ∞ x ( t − τ ) x ( t ) d t (5) R_(xx)(\tau)=\int_{-\infty}^{\infty}x(t)x(t+\tau)dt=\int_{-\infty}^{\infty}x(t-\tau)x(t)dt \tag{5} R(xx)(τ)=x(t)x(t+τ)dt=x(tτ)x(t)dt(5)
显然有
R x x ( τ ) = R x x ( − τ ) R_{xx}(\tau)=R_{xx}(-\tau) Rxx(τ)=Rxx(τ)
根据自相关函数的定义,当 τ = 0 \tau=0 τ=0时有 R x x ( 0 ) = ∫ − ∞ ∞ x 2 ( t ) d t R_{xx}(0)=\int_{-\infty}^{\infty}x^2(t)dt Rxx(0)=x2(t)dt,它恰等于信号本身的能量,此值也是自相关函数的最大值,对于周期信号的自相关函数, τ \tau τ为信号周期的整数倍时达到其最大值,此值等于该周期信号的平均功率。

对于功率型信号,可以有与式(4)、式(5)相对应的定义,为
R x y ( τ ) = l i m T → ∞ 1 2 T ∫ − T T x ( t ) y ( t + τ ) d t R x x ( τ ) = l i m T → ∞ 1 2 T ∫ − T T x ( t ) x ( t + τ ) d t R_{xy}(\tau)=lim_{T\to \infty}\frac{1}{2T}\int_{-T}^{T}x(t)y(t+\tau)dt \\ R_{xx}(\tau)=lim_{T\to \infty}\frac{1}{2T}\int_{-T}^Tx(t)x(t+\tau)dt Rxy(τ)=limT2T1TTx(t)y(t+τ)dtRxx(τ)=limT2T1TTx(t)x(t+τ)dt
x ( t ) 、 y ( t ) x(t)、y(t) x(t)y(t)是两个周期为 2 T 2T 2T的周期信号,则它们的 R x y ( τ ) R_{xy}(\tau) Rxy(τ) R x x ( τ ) R_{xx}(\tau) Rxx(τ)可表示为
R x y ( τ ) = 1 2 T ∫ − T T x ( t ) y ( t + τ ) d t R x x ( τ ) = 1 2 T ∫ − T T x ( t ) x ( t + τ ) d t R_{xy}(\tau)=\frac{1}{2T}\int_{-T}^{T}x(t)y(t+\tau)dt \\ R_{xx}(\tau)=\frac{1}{2T}\int_{-T}^Tx(t)x(t+\tau)dt Rxy(τ)=2T1TTx(t)y(t+τ)dtRxx(τ)=2T1TTx(t)x(t+τ)dt
由以上定义可知,互相关函数是彼此有位移的两个信号之间相似或相依程度的度量,是两个信号相对位移 τ \tau τ的函数,因而不仅可以用来确定信号是否存在,还能用来测量信号到达的时间及彼此的距离。

通常相关函数由定义直接求取,可以分为解析法和图解法。

三、相关定理

对于两个信号 x ( t ) x(t) x(t) y ( t ) y(t) y(t),可以进行卷积运算,也可以进行相关函数的计算。
x ( τ ) ∗ y ( τ ) = ∫ − ∞ ∞ x ( t ) y ( τ − t ) d t R x y ( τ ) = ∫ − ∞ ∞ x ( t ) y ( τ + t ) d t x(\tau)*y(\tau)=\int_{-\infty}^{\infty}x(t)y(\tau-t)dt \\ R_{xy}(\tau)=\int_{-\infty}^{\infty}x(t)y(\tau+t)dt x(τ)y(τ)=x(t)y(τt)dtRxy(τ)=x(t)y(τ+t)dt
可见,这两种运算非常相似,都有一个位移、相乘、求和(积分)的过程,差别仅仅在于卷积运算先要进行翻转,所以有
R y x ( τ ) = R x y ( − τ ) = ∫ − ∞ ∞ x ( t ) y ( t − τ ) d t = x ( τ ) ∗ y ( − τ ) (6) R_{yx}(\tau)=R_{xy}(-\tau)=\int_{-\infty}^{\infty}x(t)y(t-\tau)dt=x(\tau)*y(-\tau) \tag{6} Ryx(τ)=Rxy(τ)=x(t)y(tτ)dt=x(τ)y(τ)(6)
上式表明,可以通过两个信号的卷积运算求取它们的相关函数,只要在卷积运算之前先对一个信号进行翻转即可。

由卷积定理,建立了时域卷积和频域相乘的对应关系,那么相关函数在频域有否类似的对应关系呢?

设已知
x ( t ) ↔ F X ( w ) , y ( t ) ↔ F Y ( w ) x(t)\overset{F}{\leftrightarrow}X(w),y(t)\overset{F}{\leftrightarrow}Y(w) x(t)FX(w),y(t)FY(w)
根据傅里叶变换卷积定理及翻转公式,有
x ( t ) ∗ y ( − t ) ↔ F X ( w ) Y ( − w ) x(t)*y(-t)\overset{F}{\leftrightarrow}X(w)Y(-w) x(t)y(t)FX(w)Y(w)
由式(6),可以得到
R y x ( τ ) ↔ F X ( w ) Y ( − w ) R_{yx}(\tau)\overset{F}{\leftrightarrow}X(w)Y(-w) Ryx(τ)FX(w)Y(w)
对于实函数 y ( t ) y(t) y(t),有 Y ( − w ) = Y ∗ ( w ) Y(-w)=Y^*(w) Y(w)=Y(w),故有
R y x ( τ ) = R x y ( − τ ) ↔ F X ( w ) Y ∗ ( w ) R_{yx}(\tau)=R_{xy}(-\tau)\overset{F}{\leftrightarrow}X(w)Y^*(w) Ryx(τ)=Rxy(τ)FX(w)Y(w)
X ( w ) Y ∗ ( w ) X(w)Y^*(w) X(w)Y(w)称为互能量密度谱,它与互相关函数 R y x ( τ ) R_{yx}(\tau) Ryx(τ)互为傅里叶变换对。

更进一步,若 y ( t ) y(t) y(t)为实偶函数,则 Y ( w ) = Y ∗ ( w ) Y(w)=Y^*(w) Y(w)=Y(w)也是实偶函数,故有
R y x ( τ ) = R x y ( − τ ) ↔ F X ( w ) Y ( w ) R_{yx}(\tau)=R_{xy}(-\tau)\overset{F}{\leftrightarrow}X(w)Y(w) Ryx(τ)=Rxy(τ)FX(w)Y(w)
上面的讨论用于自相关函数,可得到实函数 x ( t ) x(t) x(t)的自相关函数为
R x x ( τ ) ↔ F X ( w ) X ∗ ( w ) = ∣ X ( w ) ∣ 2 = E ( w ) (7) R_{xx}(\tau)\overset{F}{\leftrightarrow}X(w)X^*(w)=|X(w)|^2=E(w) \tag{7} Rxx(τ)FX(w)X(w)=X(w)2=E(w)(7)
这就是相关定理,表明一个信号的自相关函数和该信号的自能量密度谱互为傅里叶变换对。

式(7)即为
R x x ( τ ) = 1 2 π ∫ − ∞ ∞ ∣ X ( w ) ∣ 2 e j w τ d w R_{xx}(\tau)=\frac{1}{2\pi}\int_{-\infty}^{\infty}|X(w)|^2e^{jw\tau}dw Rxx(τ)=2π1X(w)2ejwτdw
故有
R x x ( 0 ) = 1 2 π ∫ − ∞ ∞ ∣ X ( w ) ∣ 2 d w R_{xx}(0)=\frac{1}{2\pi}\int_{-\infty}^{\infty}|X(w)|^2dw Rxx(0)=2π1X(w)2dw
而由上面的讨论,信号 x ( t ) x(t) x(t)的总能量为
R x x ( 0 ) = ∫ − ∞ ∞ x 2 ( t ) d t R_{xx}(0)=\int_{-\infty}^{\infty}x^2(t)dt Rxx(0)=x2(t)dt
由此得到
R x x ( 0 ) = ∫ − ∞ ∞ x 2 ( t ) d t = 1 2 π ∫ − ∞ ∞ ∣ X ( w ) ∣ 2 d w R_{xx}(0)=\int_{-\infty}^{\infty}x^2(t)dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}|X(w)|^2dw Rxx(0)=x2(t)dt=2π1X(w)2dw
显然这就是实连续信号的帕斯瓦尔公式

对一般的功率型信号,类似地可得出
R y x ( τ ) ↔ F l i m T → ∞ 1 2 T X T ( w ) Y T ∗ ( w ) R x x ( τ ) ↔ F l i m T → ∞ 1 2 T ∣ X T ( w ) ∣ 2 R_{yx}(\tau)\overset{F}{\leftrightarrow}lim_{T\to \infty}\frac{1}{2T}X_T(w)Y^*_T(w) \\ R_{xx}(\tau)\overset{F}{\leftrightarrow}lim_{T\to \infty}\frac{1}{2T}|X_T(w)|^2 Ryx(τ)FlimT2T1XT(w)YT(w)Rxx(τ)FlimT2T1XT(w)2
其中 X T ( w ) X_T(w) XT(w) Y T ( x ) Y_T(x) YT(x)分别是 x ( t ) x(t) x(t) y ( t ) y(t) y(t)截断后的傅里叶变换,即
x T ( t ) = { x ( t ) ∣ t ∣ < T 0 ∣ t ∣ > T ↔ F X T ( w ) Y T ( t ) = { y ( t ) ∣ t ∣ < T 0 ∣ t ∣ > T ↔ F Y T ( w ) x_T(t)=\begin{cases}x(t) & |t|<T\\ 0 & |t|>T \end{cases} \overset{F}{\leftrightarrow} X_T(w) \\ Y_T(t)=\begin{cases}y(t) & |t|<T\\ 0 & |t|>T \end{cases} \overset{F}{\leftrightarrow} Y_T(w) xT(t)={x(t)0t<Tt>TFXT(w)YT(t)={y(t)0t<Tt>TFYT(w)
并且可类似地证明功率信号帕斯瓦尔公式:
l i m T → ∞ 1 2 T ∫ − T T ∣ x ( t ) ∣ 2 d t = 1 2 π ∫ − ∞ ∞ l i m T → ∞ ∣ X T ( w ) ∣ 2 2 T d w lim_{T\to \infty}\frac{1}{2T}\int_{-T}^T|x(t)|^2dt = \frac{1}{2\pi}\int_{-\infty}^{\infty}lim_{T\to \infty}\frac{|X_T(w)|^2}{2T}dw limT2T1TTx(t)2dt=2π1limT2TXT(w)2dw
相关函数及相关定理是为了研究随机信号而引入的,这里借用来研究确定性信号,并重点研究信号之间的相似性或相依性。

编辑推荐 本书全面论述了信号完整性问题,它以入门式的切入方式,使得读者很容易认识到物理互连影响电气性能 的实质,从而可以尽快掌握信号完整性设计技术。本书作者从实践的角度指出了造成信号完整性问题的根 源,特别给出了在设计前期阶段的问题解决方案。 本书的主要内容 ·信号完整性和物理设计概论 ·带宽、电感和特性阻抗的实质含义 ·电阻、电容、电感和阻抗的相关分析 ·解决信号完整性问题的四个实用技术手段:经验法则、解析近似、数值模拟、实际测量 ·物理互连设计对信号完整性的影响 ·数学推导背后隐藏的解决方案 ·改进信号完整性推荐的设计准则 通常,大多数同类书籍都会花费大量的篇幅进行严格的理论推导和数学描述,而本书则更强调直观理解、 实用工具和工程实践。 内容简介 本书全面论述了信号完整性问题。主要讲述了信号完整性和物理设计概论,带宽、电感和特性阻抗的实质 含义,电阻、电容、电感和阻抗的相关分析,解决信号完整性问题的四个实用技术手段,物理互连设计对 信号完整性的影响,数学推导背后隐藏的解决方案,以及改进信号完整性推荐的设计准则等。该书与其他 大多数同类书籍相比更强调直观理解、实用工具和工程实践。它以入门式的切入方式,使得读者很容易认 识到物理互连影响电气性能的实质,从而可以尽快掌握信号完整性设计技术。本书作者以实践专家的视角 提出了造成信号完整性问题的根源,特别给出了在设计前期阶段的问题解决方案。这是面向电子工业界的 设计工程师和产品负责人的一本具有实用价值的参考书,其目的在于帮助他们在信号完整性问题出现之前 能提前发现并及早加以解决,同时也可作为相关专业本科生及研究生的教学指导用书。 作者简介 Eric Bogatin,于1976年获麻省理工大学物理学士学位,并于1980年获亚利桑那大学物理硕士和博士学位 。目前是GigaTest实验室的首席技术主管。多年来,他在信号完整性领域,包括基本原理、测量技术和分 析工具等方面举办过许多短期课程,培训过4000多工程师,在信号完整性、互连设计、封装技术等领域已 经发表了100多篇技术论文、专栏文章和专著。 译者简介: 李玉山,现为西安电子科技大学教授、国家重点学科“电路与系统”博士生导师、国家电工电子教学基地 副主任、电路CAD研究所所长、全国通信ASIC委员会委员及国家IC设计西安基地专家委员。曾于1986年和 1999年分别赴美国迈阿密大学和北卡罗来纳州立大学合作研究机器视觉和VLSI设计。 目录 第1章 信号完整性分析概论 1.1 信号完整性的含义 1.2 单一网络的信号质量 1.3 串扰 1.4 轨道塌陷噪声 1.5 电磁干扰 1.6 信号完整性的两个重要推论 1.7 电子产品的趋势 1.8 新设计方法学的必要性 1.9 一种新的产品设计方法学 1.10 仿真 1.11 模型和建模 1.12 通过计算创建电路模型 1.13 三种测量技术 1.14 测量的作用 1.15 小结 第2章 时域与频域 2.1 时域 2.2 频域中的正弦波 2.3 频域中解决问题的捷径 2.4 正弦波特征 2.5 傅里叶变换 2.6 重复信号的频谱 2.7 理想方波的频谱 2.8 从频域到时域 2.9 带宽对上升时间的影响 2.10 带宽及上升时间 2.11 “有效的”含义 2.12 实际信号的带宽 2.13 带宽和时钟频率 2.14 测量的带宽 2.15 模型的带宽 2.16 互连线的带宽 2.17 小结 第3章 阻抗和电气模型 3.1 用阻抗描述信号完整性 3.2 阻抗的含义 3.3 实际和理想的电路元件 3.4 时域中理想电阻的阻抗 3.5 时域中理想电容的阻抗 3.6 时域中理想电感的阻抗 3.7 频域中的阻抗 3.8 等效电气电路模型 3.9 电路理论和SPICE 3.10 建模简介 3.11 小结 第4章 电阻的物理基础 4.1 将物理设计转化为电气性能 4.2 互连线电阻的最佳近似 4.3 体电阻率 4.4 单位长度电阻 4.5 方块电阻 4.6 小结 第5章 电容的物理基础 5.1 电容中的电流流动 5.2 球面电容 5.3 平行板近似 5.4 介电常数 5.5 电源、地平面和去耦电容 5.6 单位长度电容 5.7 二维场求解器 5.8 有效介电常数 5.9 小结 第6章 电感的物理基础 6.1 电感的含义 6.2 电感定律之一:电流周围将形成闭合磁力线圈 6.3 电感定律之二:电感是导体上流过单位安培电流时,导体周围磁力线圈的韦伯值 6.4 自感和互感 6.5 电感定律之三:当导体周围的磁力线圈匝数变化时,导体两端将产生感应电压 6.6 局部电感 6.7 有效电感、总电感或净电感及地弹 6.8 回路自感和回路互感 6.9 电源分布系统和回路电感 6.10 单位面积的回路电感 6.11 平面和过孔接触孔的回路电感 6.12 具有出砂孔区域的平面回路电感 …… 第7章 传输线的物理基础 第8章 传输线与反射 第9章 有损线、上升边退化和材料特性 第10章 传输线的串扰 第11章 差分对与差分阻抗 附录A 100条使信号完整性问题最小化的通用设计原则 附录B 100条估计信号完整性效应的经验法则 附录C 参考文献 附录D 术语表 硬件工程师的首选发表于 2008-10-28 0 进行高速PCB板设计,必然要考虑信号完整性要求,而对于在校大学生来说,教授们很少有谈到这方面内 容的,最多是考虑一下EMC/EMI问题,这本书很适合学生自学。马上要读研究生了,才发现要找到一份硬 件工程师的工作,要在课外学习的东西太多太多了,而信号完整性分析恰恰是需要学习的比较重要的一部 分。 好书,经典!发表于 2008-10-07 08:32个人评分:    过瘾 受益匪浅    相当经典的书,翻译的也还可以
信号处理过程中,对两个信号的相似性的度量可以用相似性来表示。信号与自身的相关性称为自相关,两种信号相关称为互相关。基于信号相关性可以从未知信号中检测出目标信号。因此对信号相关性的研究具有重要意义。 相关函数中峰值的滞后指数表示信号最相似的时间移动。因此,可以使用相关性来检测某个信号c否包含在另一个信号中, 如果是的话,则两个信号的互相关有一个很高的峰值.如果没有一个相对较高的峰值,则这些信号实际上没有任何时间延迟。例如,有一段几个人的声音的混合音频,用单个人的音频波形与混合波形进行互相关运算。 利用互相关可以探测出附近的目标,并且可以估算出目标的距离。将一已知信号作为雷达信号,如果雷达信号遇到目标,则会有信号反射回信号接收设备。但是,接收到的返回信号可能会与雷达信号不同(如信号含有延时、噪声等)例如,返回信号(Received Signal)包含雷达信号(Transmitted Signal)和其他信号(Other Signal 1、 Other Signal 2)。 在观测场景r(x,y)=s(x,y) + n(x,y)中已知的目标图像s(x,y),其中n(x,y)表示噪声信号,与处理声音信号类似,通过求r(x,y)与已知目标图像s(x,y)互相关函数c(x,y)。然后,找到相关输出的一个峰值,如果这个峰值是超过一定的阈值,则可以认为该场景包含的目标是集中在峰值的位置。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值