吴恩达机器学习笔记week14——降维 Dimensionality Reduction(无监督学习&PCA)

该博客详细介绍了吴恩达机器学习课程第14周的内容,主要聚焦于无监督学习中的降维技术——主成分分析PCA。PCA的主要目标包括数据压缩和可视化,通过最小化投影误差来实现。博客还阐述了PCA与线性回归的区别,以及PCA的实施步骤和数据预处理。此外,讨论了如何选择主成分的数量,并解释了如何从压缩表示中重构数据。最后,给出了在实际应用PCA时的一些建议。
摘要由CSDN通过智能技术生成

@[TOC](吴恩达机器学习笔记week14——降维 Dimensionality Reduction(无监督学习))

14-1.目标.I:数据压缩 Motivation I:Data Compression

在这里插入图片描述
在这里插入图片描述

14-2.目标.II:可视化 Motivation II:Data Visualization

在这里插入图片描述

14-3.主成分分析问题规划1 PCA problem formulation——原理理论基础

PCA == principal component analysis 主成分分析
projection error 投影误差——需要最小化
在这里插入图片描述

  • PCA VS 线性回归
    在这里插入图片描述

14-4.主成分分析问题规划2 PCA problem algorithm——实现步骤

  • 数据预处理
    在这里插入图片描述
    • 求降维后的向量
      在这里插入图片描述
      在这里插入图片描述
  • 总结
    在这里插入图片描述

14-5.主成分数量选择 Choosing the number of principal components——K


在这里插入图片描述

14-6.压缩重现 Reconstruction from compressed representation

在这里插入图片描述

14-7.应用.PCA.的建议 Advice for applying PCA

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值