@[TOC](吴恩达机器学习笔记week14——降维 Dimensionality Reduction(无监督学习))
14-1.目标.I:数据压缩 Motivation I:Data Compression
14-2.目标.II:可视化 Motivation II:Data Visualization
14-3.主成分分析问题规划1 PCA problem formulation——原理理论基础
PCA == principal component analysis 主成分分析
projection error 投影误差——需要最小化
- PCA VS 线性回归
14-4.主成分分析问题规划2 PCA problem algorithm——实现步骤
- 数据预处理
- 求降维后的向量
- 求降维后的向量
- 总结
14-5.主成分数量选择 Choosing the number of principal components——K
14-6.压缩重现 Reconstruction from compressed representation
14-7.应用.PCA.的建议 Advice for applying PCA