吴恩达深度学习2笔记week1——深度学习的实用层面 Setting up your ML application

1.1 训练_开发_测试集 train/dev/test sets

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2 偏差_方差 Bias/Variance

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.3 机器学习基础 Basic “recipe” for machine learning

在这里插入图片描述

1.4 L2正则化 Regularization

在这里插入图片描述

1.5 为什么正则化可以减少过拟合?Why regularization reduces overfitting?

在这里插入图片描述
在这里插入图片描述

1.6 Dropout 正则化 Dropout regularization

在这里插入图片描述

  • Inverted dropout 反向随机失活
    在这里插入图片描述
    在这里插入图片描述

1.7 理解 Dropout Understanding dropout

  • dropout是一种正则化方法,有助于预防过拟合
    在这里插入图片描述

1.8 其他正则化方法 Other regularization methods

  • 数据扩增 data augmentation
    在这里插入图片描述
  • early stopping
    在这里插入图片描述

1.9 归一化输入 Normalizing inputs

在这里插入图片描述
在这里插入图片描述

1.10 梯度消失与梯度爆炸 Vanishing/exploding gradients

在这里插入图片描述
在这里插入图片描述

1.11 神经网络的权重初始化 Weight initialization for deep networks

  • weight 与1接近
    在这里插入图片描述

1.12 梯度的数值逼近 Numerical approximation of gradients

在这里插入图片描述

1.13 梯度检验 Gradient Checking

  • help find bugs in implemntations of back propagation
    在这里插入图片描述
    在这里插入图片描述

1.14 关于梯度检验实现的注记 Gradient Checking implementation notes

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值