深度学习模型参数量/计算量(附计算代码)

参考:

  1. https://mp.weixin.qq.com/s?__biz=MzI4MDYzNzg4Mw==&mid=2247546551&idx=2&sn=f198b6365e11f0a18832ff1203302632&chksm=ebb70e63dcc0877569d1838b2391744be628bf6cbb6e203a49f855e0769ecbbbf5a9929fe2db&scene=27

  1. https://www.cnblogs.com/king-lps/p/10904552.html

  1. https://zhuanlan.zhihu.com/p/337810633

在测试一个模型时,我们经常会用到FLOPS,FLOPs,Params↓

FLOPS

注意S大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。

计算公式:

对卷积层:(K_h * K_w * C_in * C_out) * (H_out * W_out)

对全连接层:C_in * C_out

FLOPs

注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度

GFLOPS

GFLOPS 就是 Giga Floating-point Operations Per Second,即每秒10亿次的浮点运算数,常作为GPU性能参数但不一定代表GPU的实际表现,因为还要考虑具体如何拆分多边形和像素、以及纹理填充,理论上该数值越高越好。1GFlops = 1,000MFlops

一点常用的换算关系:

一个 MFLOPS (megaFLOPS) 等于每秒1百万 (=10^6) 次的浮点运算,

一个 GFLOPS (gigaFLOPS) 等于每秒10亿 (=10^9) 次的浮点运算,

一个 TFLOPS (teraFLOPS) 等于每秒1万亿 (=10^12) 次的浮点运算,

一个 PFLOPS (petaFLOPS) 等于每秒1千万亿 (=10^15) 次的浮点运算。

Params

是指模型训练中需要训练的参数总数

模型参数量计算公式为:

对卷积层:(K_h * K_w * C_in)* C_out

对全连接层:C_in * C_out

注意:

1.params只与你定义的网络结构有关,和forward的任何操作无关。即定义好了网络结构,参数就已经决定了。FLOPs和不同的层运算结构有关。如果forward时在同一层(同一名字命名的层)多次运算,FLOPs不会增加

  1. Model_size = 4*params 模型大小约为参数量的4倍

计算方法

方法1-使用thop库

import torch
from thop import profile
from models.yolo_nano import YOLONano

device = torch.device("cpu")
#input_shape of model,batch_size=1
net = YOLONano(num_classes=20, image_size=416) ##定义好的网络模型

input = torch.randn(1, 3, 416, 416)
flops, params = profile(net, inputs=(input, ))

print("FLOPs=", str(flops/1e9) +'{}'.format("G"))
print("params=", str(params/1e6)+'{}'.format("M")

方法2-使用torchstat库

torchstat这个库来查看网络模型的一些信息,包括总的参数量params、MAdd、显卡内存占用量和FLOPs等

from torchstat import stat
from torchvision.models import resnet50
model = resnet50()
stat(model, (3, 224, 224))

方法3-使用 ptflops:https://github.com/sovrasov/flops-counter.pytorch

from ptflops import get_model_complexity_info
from torchvision.models import resnet50
model = resnet50()
flops, params = get_model_complexity_info(model, (3, 224, 224), as_strings=True, print_per_layer_stat=True)
print('Flops:  ' + flops)
print('Params: ' + params)

方法4-使用 pytorch-OpCounter (pytorch版本>=1.0)

from torchvision.models import resnet50
from thop import profile
model = resnet50()
flops, params = profile(model, input_size=(1, 3, 224,224))

方法5自己计算

print('Total params: %.2fM' % (sum(p.numel() for p in net.parameters())/1000000.0))

### 回答1: 以下是使用GRU模型进行交通预测的示例代码,其中包含RMSE评估指标的计算: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from keras.models import Sequential from keras.layers import Dense, GRU # 读取数据 data = pd.read_csv('traffic_volume.csv', index_col=0) # 数据预处理 scaler = MinMaxScaler(feature_range=(0, 1)) scaled_data = scaler.fit_transform(data) # 划分训练集和测试集 train_size = int(len(scaled_data) * 0.8) test_size = len(scaled_data) - train_size train_data = scaled_data[0:train_size, :] test_data = scaled_data[train_size:len(scaled_data), :] # 创建训练集和测试集 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset) - look_back - 1): a = dataset[i:(i + look_back), 0] X.append(a) Y.append(dataset[i + look_back, 0]) return np.array(X), np.array(Y) look_back = 24 train_X, train_Y = create_dataset(train_data, look_back) test_X, test_Y = create_dataset(test_data, look_back) # 调整输入数据的格式 train_X = np.reshape(train_X, (train_X.shape[0], train_X.shape[1], 1)) test_X = np.reshape(test_X, (test_X.shape[0], test_X.shape[1], 1)) # 创建GRU模型 model = Sequential() model.add(GRU(50, input_shape=(look_back, 1))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') # 训练模型 model.fit(train_X, train_Y, epochs=100, batch_size=1, verbose=2) # 预测测试集 test_predict = model.predict(test_X) test_predict = scaler.inverse_transform(test_predict) test_Y = scaler.inverse_transform([test_Y]) # 计算RMSE rmse = np.sqrt(mean_squared_error(test_Y[0], test_predict[:, 0])) print('Test RMSE: %.3f' % rmse) # 绘制图表 plt.plot(test_Y[0]) plt.plot(test_predict[:, 0]) plt.legend(['Actual', 'Predicted'], loc='upper left') plt.show() ``` 需要注意的是,这里的数据是一个包含交通流信息的CSV文件,其中第一列是时间戳,后面的列是各个交通路口的车流。此外,还需要根据实际情况调整模型参数,比如GRU层的神经元数量、训练轮数等等。 ### 回答2: 首先,GRU模型是一种循环神经网络(RNN)的变体,用于处理序列数据。它的全称是门控循环单元(Gated Recurrent Unit)。 要进行交通预测,我们可以使用GRU模型,并通过计算根均方误差(RMSE)来评估预测结果与真实值之间的差异。 在代码中,我们首先需要导入必要的库和数据集。然后,我们可以定义GRU模型的结构。GRU模型包含一个或多个GRU层,用于学习时间序列数据的模式。在每个GRU层之后,我们可以添加一些全连接层来进一步处理学习到的特征。 接下来,我们需要准备训练数据和测试数据。一般来说,我们可以将数据集按照一定的比例(例如70%训练数据,30%测试数据)划分为训练集和测试集。 定义好模型结构和数据集后,我们可以使用训练集来训练GRU模型。训练过程中,我们可以指定一些超参数,如迭代次数、学习率、隐层数量等。 训练完成后,我们可以使用测试集来进行交通的预测。通过计算预测值与真实值之间的RMSE,可以评估模型在测试集上的预测性能。 以下是一个简化的伪代码示例: ```python import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import GRU, Dense from sklearn.metrics import mean_squared_error # 导入数据集 data = ... # 定义模型结构 model = Sequential() model.add(GRU(units=64, activation='relu', input_shape=(input_length, input_dim))) model.add(Dense(units=1)) # 划分训练集和测试集 train_data = ... test_data = ... # 训练模型 model.compile(optimizer='adam', loss='mse') model.fit(train_data) # 预测并计算RMSE predictions = model.predict(test_data) rmse = np.sqrt(mean_squared_error(test_data, predictions)) print("RMSE:", rmse) ``` 上述代码仅为示例,并不具体指定数据和超参数等,实际应用中需要根据具体情况进行调整和完善。同时,还需注意GRU模型的超参数选择和模型调优等问题。 ### 回答3: GRU(门控循环单元)是一种循环神经网络(RNN),用于序列建模。它在时间序列中引入了门控机制,有助于捕捉长期依赖关系,并减轻了梯度消失问题。 交通预测是一个重要且具有挑战性的问题,而RMSE(均方根误差)是一种常用的模型评估指标,用于衡模型的预测准确度。下面是一个用GRU模型进行交通预测,并计算RMSE的代码示例: ```python import numpy as np from keras.models import Sequential from keras.layers import GRU, Dense from sklearn.metrics import mean_squared_error # 假设我们有一组时间序列数据作为输入(X)和相应的交通作为输出(y) # 在这个示例中,我们以时间步长为3的窗口预测下一个时间步长的交通 # 假设我们有100个样本点,每个样本有3个时间步长的输入特征 X = np.random.rand(100, 3) # 假设我们的目标是预测下一个时间步长的交通 y = np.random.rand(100) # 创建并训练GRU模型 model = Sequential() model.add(GRU(units=10, input_shape=(3, 1))) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error') model.fit(np.expand_dims(X, axis=2), y, epochs=10) # 使用训练好的模型进行预测 y_pred = model.predict(np.expand_dims(X, axis=2)) # 计算RMSE rmse = np.sqrt(mean_squared_error(y, y_pred)) print("RMSE:", rmse) ``` 在上述示例代码中,我们首先构建了一个包含一个GRU层和一个全连接层的序列模型。然后,我们使用ADAM优化器和均方误差损失函数来编译模型,并使用训练数据拟合模型。接下来,我们使用训练好的模型进行预测,并计算预测值与实际值之间的RMSE。 请注意,在实际应用中,我们可能需要调整模型架构、超参数和训练集大小等因素,以获得更好的交通预测准确度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值