神经网络的前世今生及应用

本文由微言创新(InnoTalk)授权转载,作者:金城 复旦大学副教授,博士生导师

AlphaGo、无人驾驶、人脸识别、智能翻译……这一个个耳熟能详的名词无不预示着人工智能时代的到来。人工智能的本质,是对人的思维过程和行为方式的模拟。研究人的认知机理,引入人的神经元概念,势在必行。

一、什么是神经网络

  人工智能领域的一个重要任务是让计算机能够像人一样对输入的信息进行判定。比如当计算机读入一幅图像后,能否判定里面有没有苹果,如果有,苹果在图中的哪个位置;当计算机读入一段语音后,能否判定里面有没有提到“中国”二字,如果有,在什么时间点。正是因为希望模拟人的认知,所以需要通过研究人的认知机理来指导机器提升智能。

  众所周知,人对世界的感知和理解主要通过数以亿计的神经元来完成,神经元之间彼此连接构成巨大的神经元网络,输入的信号(如视网膜上的神经元感受到的光线等)经过一层层的神经元往脑部传递,不断做出决策,再通过一层层的神经元输出到反馈端(如影响手脚部动作等)。

  图1 多个神经元彼此连接组成网络

二、神经网络的二次寒冬期

  1943年,逻辑学家Walter Pitts和神经生理学家Warren McCulloch联合发表文章,首次将神经元概念引入计算领域,提出了第一个人工神经元模型,开启了神经网络的大门。

  1957年,知名学者Frank Rosenblatt提出了“感知器”(Perceptron)的概念,该概念非常接近神经元的实际机理,通过将多层感知器前后连接,可以构成一个决策网络,从而为神经网络的研究奠定了基石。

  然而好景不长,1969年,被誉为人工智能之父的Marvin Minsky和Seymour Papert出版《Perceptron》一书探讨感知器的优劣,认为仅靠局部连接的神经网络无法有效地开展训练,而全连接的神经网络则过于复杂而不实用。更重要的是,限于当时的计算方法与能力,复杂神经网络核心权重参数的计算时长将无法忍受。这些情况影响了学界和业界对神经网络的信心,神经网络的研究陷入了第一次低谷期。

  近二十年后,当代神经网络三巨头相继发文,推动了神经网络研究的再次兴起。1986年,Geoffrey Hinton和David Rumelhart联合在Nature上发表论文,将BP算法用于神经网络模型,实现了对权重参数的快速计算。1990年,Yann LeCun发表文章,采用BP神经网络实现对手写数字的识别,这可以被视作神经网络的“第一个”重大应用,直到上世纪九十年代末,超过10%的美国支票都采用该技术进行自动识别。

  1998年,Yann LeCun又发文提出了LeNet-5的框架,即现在热火朝天的卷积神经网络(Convolutional Neural Network)的基本框架。然而卷积要消耗大量计算资源,BP方法又会带来梯度弥散的问题,从而限制了神经网络的深度和效果。

  相反,俄罗斯学者Vladmir Vapnik在1963年提出的支撑向量机(Support Vector Machine,SVM)概念则不断深入发展。到2002年,已将手写数字识别的错误率降至0.56%,远高于同期神经网络的效果。神经网络的研究迎来了第二次寒冬。

三、深度神经网络的兴起

  2005年以后,神经网络再一次卷土重来,神经网络迎来了深度神经网络(深度学习)的时代。这主要得益于三个方面的原因:首先,新方法的出现,为神经网络深度的拓展解决了梯度弥散的问题;其次,大量已标注数据的出现,为神经网络的训练做好了数据准备;最后,GPU(图形处理器)的使用,为卷积计算提供了高速解决方案。

  2012年,AlexNet横空出世,在ImageNet上击溃了传统的机器学习方法,取得了令人瞩目的成绩,彻底掀起了深度学习的热潮,各种深度学习的机制不断出现,比如可以处理时序数据的Recursive Neural Networks、Long Short Term Memory等。

  与之前两次神经网络热潮不同的是,企业界展现了浓厚的兴趣,并逐步成为研究的主导者。Google、Facebook、Microsoft、Amazon、IBM等知名国际企业,以及百度、阿里巴巴、腾讯等国内互联网巨头均投入了大量人力物力开展深度学习相关的研究,诞生了大量深度学习框架。

四、深度学习的多领域应用

  1、深度学习在多媒体领域的应用

  在语音识别上,针对音素(Phoneme)识别,2009年深度学习的错误率为23.0%;而在单词(Word)识别上,2011年深度学习的错误率仅为30.4%;在对话识别上,2014年百度进一步将错误率降低到了20%以下。

  在图像识别方面,计算机对图像的识别能力甚至已经超过了人类。图2-3分别展示了在ImageNet比赛物体识别项目和人脸识别任务上,近年来的进步情况。在Youtube Face DB数据集上,2015年FaceNet(Google)识别率也可达95.12%。此外,在关注度识别、海量图像的分类与识别(淘宝拍立淘应用)、图像描述、人群计数等方面,深度学习都有了突破性进展,或在业界得到了真实应用。

  

  图 2 ImageNet比赛物体识别项目Top-5 Error的进步情况

  

  图 3人脸识别任务Top-1 Accuracy的进步情况

  在图像处理方面,一款风靡全球的图像类App “Prisma”也应用了深度学习。德国学者Leon A. Gatys等人在2015年提出可以通过深度学习将艺术家的画风映射到照片上,从而使写实的照片瞬间成为某个艺术画派的画作。

  在自然语言理解上,随着Word2Vec的适时出现,词语获得了更稠密的向量表示方法,其相关性也更容易计算,使得深度学习具备了重要的输入手段,极大地推动了相关的深度学习应用。

  2、深度学习在其他领域的应用

  深度学习在电力管理、军事、医疗、智能制造等多个行业也得到了重要应用。

  例如Google DeepMind的深度学习网络,造就了2016年初火爆的AlphaGo大胜李世石,目前AlphaGo已经在最新的GoRating排名上以3612分超越围棋名将柯洁(3608分)成为世界第一。最近Google DeepMind还被用于电力管理,操控计算机服务器和相关设备(例如冷却系统)来管理部分数据中心,可降低15%的能耗,每年为Google节省电费1650~2650万美元。最新数据显示该节能比例可能高达40%。

  在军事领域,美国军方早已开展相关研究与应用。2009年DARPA(美国国防部先进研究项目局)已着手撰写相关报告,2010年起开始资助相关项目。2012年的DEFT项目和2015年的TRACE项目即分别针对海量文本的数据分析和图像中的目标识别。

  在医疗领域,深度学习已经在DNA分析、癌症预测等方面产生重要影响。如普林斯顿大学的DeepSEA可预测重要调控位点对单核苷酸变异的影响,哈佛大学的Basset可预测单核苷酸多态性对染色质可接近性的影响,多伦多大学的DeepBind 能发现RNA与DNA上的蛋白结合位点,预测突变的影响。

  在智能制造领域,Google在2016年以14台机械臂,80万次抓取作为训练,可实现对未见过物件的精准抓取,其软硬材质、透明、不同重量、异形等多种多样。

  

  图 4 Google机械臂抓取训练

五、深度学习的发展前景

  后期深度学习的研究预计将在局部最优、计算复杂度、网络的设计优化等方面继续开展,可能出现更多种类、更大规模的数据集(如Feifei Li目前推动的视觉基因组Visual Genome)。同时,深度学习需要借助大量的训练数据,而人类却能仅通过有限样例学习到新的概念和类别,有很多研究者期望通过One-Shot Learning来解决这种机器和人之间的差异。

  在硬件方面,针对深度学习优化的新指令集与计算芯片已成为研究热点,体系结构领域的顶级会议ISCA 2016收录的57篇论文中,9篇与深度学习相关,评分最高的论文是寒武纪处理芯片。以FPGA(Field-Programmable Gate Array,现场可编程门阵列)为主的专用处理芯片也已进入业界视线,期望能降低成本和功耗。

  尽管深度学习已经遍地开花,但我们也应该清醒地意识到,这未必就是通往人工智能的唯一途径,离全面实际应用还存在着距离。Google的图像标注系统将黑人标注成大猩猩引发了巨大的社会争议,特斯拉无人驾驶汽车最近的车祸也一再提醒人们,人工智能即便只有很微小的错误率,在实际生活中也可能会造成惨祸。因此,人工智能的研究依然漫长而艰难。

  延伸阅读:

  人工智能&神经网络的前世今生

来源:德智资本(triwise)

文/图 蓝志豪 lanzh@triwise.cn

人工智能的时代

  

  在技术飞快进步的时代,下一个计算平台,可能将是量子计算机与人工智能的结合的产物。

  如果计算能力能强大到这种地步,人们将不再需要随身携带一个计算设备,世界上只需要一个强大的人工智能就够了。

  离线而非在线的云数据才是未来的机会所在。这也是机器人可以进入的领域,因为它能够移动,利用机器人身上装的传感器,它可以感知到周围的真实环境,在与环境互动的过程中学习。

  在计算机科学中,这个过程被称之为感应、计划及执行。如果利用云计算去执行这件事情,很难与真实世界产生互动,就像被困在一个玻璃瓶中一样。但如果利用机器人直接与真实世界互动产生数据,那将能从中获得真实世界的信息反馈。

  机器学习

  机器学习是指用某些算法指导计算机利用已知数据得出适当的模型,并利用此模型对新的情境给出判断的过程。 由此看来,机器学习的思想并不复杂,它仅仅是对人类生活中学习过程的一个模拟。

  而在这整个过程中,最关键的是数据。 机器学习和大数据是如此密不可分的。不得不说在这一点上计算机是远远比不上人脑的。 人类学习能力的可怕之处在于,能够通过极其有限的样本归纳出泛化能力极高的准则。 只要数据量足够大,机器学习算法的选择反倒没有那么重要了。

  机器学习根据所处理数据种类的不同,可以分为有监督学习,无监督学习,半监督学习和强化学习等几种类型。 实践中应用较多的也就是前两种。 所谓监督学习,就是说数据样本会告诉计算机在该情形下的正确输出结果,希望计算机能够在面对没有见过的输入样本时也给出靠谱的输出结果,从而达到预测未知的目的。 根据输出结果是离散值还是连续值,监督学习可以分为分类问题和回归问题两大类。

  机器学习在文字、语音、图像识别,大数据分析、搜索,预测等方面有着广泛应用。 而无监督学习,是指数据样本中没有给出正确的输出结果信息。

  接下来将简单地介绍一部分人工智能相关的一部分算法。

  线性回归

  回归就是通过数据学习数量关系,然后利用这个数量关系去做预测。回归的策略是跳过逻辑分析,让计算机直接从数据中学习数量关系。这正是机器学习(统计学习)的核心思想。

  在一个回归模型中,需要关注或预测的变量叫做因变量(响应变量或结果变量),选取的用来解释因变量变化的变量叫做自变量(解释变量或预测变量)。

  做回归分析,确定变量后要根据具体问题选择一个合适的回归模型,常用的回归模型有线性回归,多项式回归,逻辑回归等。线性回归是最简单实用的回归模型。

  线性回归的数学基础

  自变量X,因变量Y,观测值是:

  回归方程是

  k,b是是待学习的参数,ε为残差。

  简单来说是找到一条直线y=kx+b来进行模拟,使得所有样本点尽可能落在这条直线的附近。

  然而来自现实的数据是有误差的,真正的考验是无法保证所有的样本点都精确满足回归方程。

  其实这里可以通过高等数学中的只是进行弥补:用误差ε取到极小,通过最小二乘法(Ordinary Least Square, OLS)。求解使得εi(i=1,2,…,n)的平方和极小化的k,b:

  

  多元线性回归本质也是一样,只是自变量和参数的个数变为多个。

  从数理统计的角度来看,需要满足以下条件:

  1. 误差ε是一个期望0的随机向量;

  1. 对于解释变量的所有观测值,ε的各个分量有相同的方差,且彼此不相关;

  1. 解释变量与随机误差项彼此相互独立;

  1. 解释变量之间不存在精确的线性关系;

  2. 随机误差项服从正态分布。

  然而现实中,无论数据是否满足模型假设,都可以通过最小二乘法去得到参数。

  

  (Anscombe's quartet,图片来自维基百科)

  以上对四组观测数据,虽然用线性回归将得到完全相同的模型,但是此时的模型的有效性就很难解释了。

  检验一个回归模型之前需要对数据进行验证:

  1. ε是否近似满足平均值为0的正态分布

  1. 因变量值是否独立

  2. 是否存在离群点、强影响点

  所以可以看出来,最最核心的事情就是数据的预处理和数据是都合理。

  贝叶斯公式

  设A和B是两个事件,那么贝叶斯公式为:

  

  其中:

  • P(A)和P(B)表示A和B各自发生的概率

  • P(A | B)表示已知B发生时,A发生的条件概率

  • P(B | A)表示已知A发生时,B发生的条件概率

  贝叶斯公式因其独立性假设而得名,不论模型训练或者预测分类,计算都是线性的,因此计算量很小、结果也精确,所以它是公认的数据挖掘十大算法之一。

  逻辑回归

  逻辑回归(LogisticRegression)区别于一般的线性回归模型。

  由于很多情况下因变量是定型变量,所以需要用到逻辑回归算法;而逻辑回归算法也因为简单易用,则成为了互联网常用常用算法和深度学习的基本组成单元。

  sigmoid函数

  在介绍逻辑回归模型之前,我们先引入sigmoid函数,其数学形式是:

  对应的函数曲线如下图所示:

  

  从上图可以看到sigmoid函数是一个s形的曲线,它的取值在[0, 1]之间,在远离0的地方函数的值会很快接近0/1。这个性质使我们能够以概率的方式来解释(后边延伸部分会简单讨论为什么用该函数做概率建模是合理的)。

  决策函数

  一个机器学习的模型,实际上是把决策函数限定在某一组条件下,这组限定条件就决定了模型的假设空间。当然,我们还希望这组限定条件简单而合理。而逻辑回归模型所做的假设是:

  这里的 g(h) 是上边提到的 sigmoid 函数,相应的决策函数为:

  选择0.5作为阈值是一个一般的做法,实际应用时特定的情况可以选择不同阈值,如果对正例的判别准确性要求高,可以选择阈值大一些,对正例的召回要求高,则可以选择阈值小一些。

  生成模型和判别模型

  逻辑回归是一种判别模型,表现为直接对条件概率P(y|x)建模,而不关心背后的数据分布P(x,y)。而高斯贝叶斯模型(Gaussian Naive Bayes)是一种生成模型,先对数据的联合分布建模,再通过贝叶斯公式来计算样本属于各个类别的后验概率,即:

  通常假设P(x|y)是高斯分布,P(y)是多项式分布,相应的参数都可以通过最大似然估计得到。如果我们考虑二分类问题,通过简单的变化可以得到:

  

  如果 σ1=σ0,二次项会抵消,我们得到一个简单的线性关系:

  由上式进一步可以得到:

  

  可以看到,这个概率和逻辑回归中的形式是一样的。这种情况下GNB(Gaussian Naive Bayes) 和LR(LogisticRegression)会学习到同一个模型。实际上,在更一般的假设(P(x|y)的分布属于指数分布族)下,我们都可以得到类似的结论。

  •  

  多分类(softmax)

  如果y不是在[0,1]中取值,而是在K个类别中取值,这时问题就变为一个多分类问题。有两种方式可以出处理该类问题:一种是我们对每个类别训练一个二元分类器(One-vs-all),当K个类别不是互斥的时候,比如用户会购买哪种品类,这种方法是合适的。如果K个类别是互斥的,即 y=i 的时候意味着 y 不能取其他的值,比如用户的年龄段,这种情况下 Softmax 回归更合适一些。Softmax 回归是直接对逻辑回归在多分类的推广,相应的模型也可以叫做多元逻辑回归(Multinomial Logistic Regression)。模型通过 softmax 函数来对概率建模,具体形式如下:

  

  而决策函数为:

  对应的损失函数为:

  逻辑回归的数学模型和求解都相对比较简洁,实现相对简单。通过对特征做离散化和其他映射,逻辑回归也可以处理非线性问题,是一个非常强大的分类器。

  支持向量机(Suooprt Vector Machine,SVM)

  由于实际问题中的数据分布往往比较复杂,如果单纯的从二维的角度看,数据分布可能无法精确呈现。如下图

  

  第一种为线性可分的分布,可以简单分两类;

  第二种为非线性可分的分布,虽然很难用一条直线区分开,但可以用曲线分类。

  第三种为不可分的分布,这种情况下很难完全将两类数据分开。

  而SVM则可以很好地提高第三种情况的数据处理效率。

  SVM是最大分类间隙来设计决策最优分类超平面的算法。它在解决小样本、非线性及高维模式识别有很多优势,近年来在文本识别、文本分类、人脸识别中发挥重要作用。

  优点:

  通过使用核函数,能够方便地处理高维数据

  决策函数由少量的支持向量决定,预测效率高效

  缺点:

  当特征维度远远大于样本量时,效果会比较差

  当样本量很大时,使用非线性核函数会导致计算效率低下

  SVM无法直接输出概率化的取值

  SVM的原理

  

  首先间隔定义为样本点到分类超平面(二维下即直线)的最小距离。

  正类的样本点(xi,yi=1)到决策超平面的距离为:

  

  负类的样本点(xi,yi=?1)到决策超平面的距离为:

  

  所以,任意样本点(xi,yi)到决策超平面的距离可以统一表示为:

  

  SVM的学习目标就是要找到一个决策超平面,使得训练样本集到超平面的最小距离最大化,对上述问题,即是找到下图中的超平面(直线):

  

  而这样一个直观的寻找过程可以用数学中的最优化模型来表示,其形式如下:

  

  SVM 对于决策边界近似线性的数据,可以使用软间隔的方法,允许数据跨越决策面(允许误分类),但是对跨越决策面的数据加以惩罚。 对于复杂决策面的数据,则通过核函数的方法将低维数据映射到高维甚至无限维空间,从而能够处理低纬空间中线性不可分但在高维空间线性可分的数据。

  不平衡数据

  生活中经常会遇到不平衡的数据集,比如广告点击预测、商品推荐等。

  SMOTE全称是Synthetic Minority Oversampling Technique即合成少数类过采样技术,它是基于随机过采样算法的一种改进方案,由于随机过采样采取简单复制样本的策略来增加少数类样本,这样容易产生模型过拟合的问题,即使得模型学习到的信息过于特别(Specific)而不够泛化(General),SMOTE算法的基本思想是对少数类样本进行分析并根据少数类样本人工合成新样本添加到数据集中,具体如图所示。

  • 其中rand(0,1)表示区间(0,1)内的随机数。

  

  过拟合问题

  “预测”就是根据已知的输入和输出进行学习,并依照给定的新输入给出判断。预测问题可以划分为分类问题和回归问题。

  为了得到一致假设而使假设变得过度复杂称为过拟合。避免过拟合是分类器设计中的一个核心任务。

  解决分类和回归问题的模型算法有上百种,一类模型自由度是固定的,这些是简单模型,如线性回归模型。另一类模型的自由度可以添加,则是复杂模型,例如决策树可以多层、神经网络可以由任意多个神经元和隐藏层。

  一般简单模型对问题效果如果不好,则只有建立更好的特征,模型并没有多少改造的空间。复杂模型则可通过不断调节自由度(参数)进行不同训练来改进。而这种更改在数据上可能得不到直观体现,效果可能先升后降。

  

  如果数据问题较复杂,简单模型无效,复杂模型又效果一般,则通常解决方案则是特征选择(FeatureSelection)、降维(Dimension Reduction)和正则化(Regularization)。在处理数据的过程中,降维与特征选择常常是耦合在一起的。

  正则化简单地说就是人为在模型中加入一些惩罚项或者约束,使得模型复杂度的升高得到限制,从而避免由于模型过度复杂而引起的过拟合。

  深度学习(Deep Learning)中的卷积神经网(ConvolutionalNeural Network)络技术可以被认为是一种正则化方法,因为卷积本身就限定了层与层之间的映射关系在一个非常小的函数空间内。

Google的野望

  

  Jeff Dean是Google系统架构组院士,在最新的讲座:“大规模深度学习构建智能计算机系统”中提到。Google的使命:Organize the world's information and make it unversally accesible and useful. 整合全球信息,使人人皆可访问并从中受益。

  

  一开始从只有少数的产品开始,但逐年增加,使用深度学习的产品有:安卓,Apps,药品发现,Gmail,图片理解,地图,自然语义,照片,机器人研究,语音、语音翻译等。

  

  深度学习可以应用到多个领域的原因是那些模块都是标准化的,如:语音,文字,搜索词,图片,视频,标签,实体,短语,音频、特征等。你的输入值,决定了你要的输出,根据收集的数据可以进行训练,得到结果后就可以放手不管。

  什么事深度神经网络?

  

  深度神经网络是从数据提炼出来的复杂函数构建的网络,而深度指的是神经网络的层数。这个系统是一组简单的可以训练的数学函数集合。

  

  当输入一张图片,输出是人工标记的猫图片,这就是所谓的监督学习。当你把许多的样本送给系统,它会去学习近似的函数。而非监督学习指的是系统可以根据非指定的图片,用深度学习的“经验”识别出图片中的物品。

  

  为了决定图片中的到底是猫还是狗,需要经过很多层。

  从最底部的神经元将会看到像素块,而更高层的神经元则会根绝下层的神经元的输出才决定是否工作。

  模型有可能会出错,但是它会总结错误并在系统中进行调整,下一次输入就可能输出正确的答案。

  学习算法比较简单

  选择训练样本

  运行神经网络在输入后查看它的结果

  调整后的权重让输出更接近于标签

  看看神经网络到底是如何工作的?

  让我们用动图看看神经网络到底是如何工作的?

  1.首先由很多层的神经网络组成整个网络

  

  2.最底层的神经网络会先对样品进行学习和判断。

  

  3.整个神经网络会进行学习,而深层的神经网络单元会根据前面的单元反馈的结果进行判断。

  

  4.不同的学习单元会有不同的判断的结果,但通过重复的学习和纠正(调整策略和权重),最终会提升学习效率和准确性

  5.经过重复学习后,这类型的图片的特征已经被神经网络记住了,以后这类型的图片也能轻易被识别

  •  

  模型的并行化

  

  神经网络有很多固有的并行化,所有不同的神经元与其他的也是保持独立,特别本地接纳的,神经元仅仅接受一小部分比它更低的神经元作为输入。

  数据并行化

  

  优化的模型参数集不应该在一台机器上或者一台中心服务器上,应该有多个模型拷贝进行分布式部署,一起协助去优化参数。

  人工智能创业正在爆炸式发展

  

  上图是Facebook十年发展路线图,对于大公司而言,人工智能已经不仅仅是一种图景,而已经是一种必备武器。Google和微软已经毋庸赘言,单说在人工智能上起步最晚的Facebook在这方面的努力就可见一斑。 Facebook几年前在人工智能上还几乎是一片空白,但追赶的速度却非常快。目前,该公司有两大实验室,其中一个是重点发展基础研究的Facebook AI项目(FAIR,Yann LeCun负责),另一个则是专注于人工智能产品应用的应用机器学习部门(AML,西班牙裔机器学习专家Joaquin Candela负责)。 在今年Facebook公布的发展路线图中,AI作为一个10年发展战略之一,已经被清晰的表述了出来。

  人工智能融资创历史 4年增长近10倍

  根据 CB Insight 的投资数据,最近一个季度,人工智能初创公司拿的钱也越来越多了。按年来看的话,这个趋势更明显

  

  这是 2011 年到 2015 年,AI 类初创公司获得融资数额的趋势图

  人工智能初创企业融资与交易数量 国外网站cbinsights最近利用其数据库对美国人工智能的融资交易情况做了个统计,结果令人震惊!人工智能初创企业的融资额在过去短短4年几乎增长了10倍,可谓大爆炸的发展!

  人工智能季度融资项目创历史新高

  今年上半年,人工智能类初创公司数量和 2011 年比,增长了 6 倍。光是今年第一季度,获得融资的 AI 相关公司就有 143 家:

  

  2011 到 2015 年每个季度 AI 公司公开的投资情况。蓝色为投资金额(单位美元),橙色为投资数量。

  人工智能企业融资仍聚焦于初期阶段

  

  人工智能初创企业融资统计 过去五年,人工智能初创企业的数量在增长,融资阶段也仍然聚焦于种子天使轮和A轮,这一方面说明人工智能的初创企业仍在早期,但也说明新的人工智能企业在增加。另外,从资金流向上看,目前多数资金都流向了人工智能企业的早期融资阶段。但是由于大融资项目的出现,E轮以上的融资额占比也在增加。

  展望未来黑科技

  Facebook 和 Google、亚马逊、微软都推出了自己的聊天机器人,而ios系统在10.0版本的更新后也还将融入人工智能并将iMessage服务开放给第三方。虽然“聊天”这个方式不一定完全是未来的交互方式,但是相信未来的5年内,大部分的应用和平台都是会植入人工智能的功能。

  就目前来说,大部分的人工智能是针对人的视觉、语言、语音,然后进行决策,然后可以做一点点的判断和预测。而如果是要做一整套完整的人工智能系统的话,是需要有一个反馈的,比如智能驾驶系统。

  而深度学习恰恰就解决了反馈的问题。它的特点是使用了多层的网络,能够学习抽象概念,然后加入自我学习,然后进行自我反馈。通过自我的学习,机器会逐步从大量的样本中抽象出相关的概念,然后做出理解然后总结,最后可以做出决策和判断。

  机器学习、深度学习在突破在精度方面已经有了很大的突破,但未来也还是有非常多的进步和融合的空间,相信未来5-10年,将不会有“互联网+”的概念,而“人工智能+”的概念将会越来越火爆。

  

  未来的“人工智能+”这个概念,将会含括大数据、感知、决策、反馈这几个方向。目前就大数据方面,互联网应用、BI(商业智能)、商业自动化都已经有使用相关的技术;而未来很多离钱最近的传统行业也将拥抱大数据,包括投资、保险、银行、医疗、教育、房地产等都会进行传统与现代的融合。

  而对于感知的方面,目前的语音识别、人脸识别、虹膜识别、指纹识别等都已经做到很高的水准;而最近一两年的VR/ AR不太可能大规模普及,因为硬件的成本过高和用户的普及率过低,还没有达到爆发的地步,但是有理由相信未来VR/ AR将会颠覆人们生活的很多方面,当中的一部分交互方式就是通过人工智能诞生的新型交互方式或者新型交互平台。

  这个新平台将会包含人工智能、先进的计算框架、算法框架,将会冲击现有的所有操作系统。它以某种形式出现,可以存在于机器人内,机器人只是一个载体,也可以增加很多的传感器,增加多维度的感知。它可以出现在任何地方,前提是只需要有一个支持运行的计算平台就可以,这样理解的话就非常像复仇者联盟的奥创。

  未来的机器人将会渗透到人类生活的方方面面,提高生活质量、工作效率,但是一定是经过新型的人工智能平台和机器人结合以后才会在日常生活、家庭中大范围普及。

  无人驾驶也将是人工智能未来的重要部分,但就目前的实际情况来说,还需要循序渐进的进行迭代、法律的完善、道德的支撑,才能真正的实现全天候的无人驾驶。

  从长期看,未来人工智能会在所有的领域彻底改变人类,产生更多的价值,取代更多人的工作,也会让很多现在重复性的工作被取代,然后让人去做人真正应该去做的事情。短期来说,人工智能商业价值也很大,短期在很多领域都能产生价值。

  在不久的将来,人工智能将会在很多的领域彻底改变乃至颠覆人类,产生更多的价值,说不定人类将借由人工智能,产生新形态的人类,延长寿命、增加智慧、开发潜能。

 

 

转载自:http://news.yikexue.com/archives/6027

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值