https://github.com/123liudong/deeplearing_nocode_handbook.git
神经网络从诞生之日起到现在的人尽皆知并不是大家想象的那么一帆风顺,接下来我将会从下面几个方面来谈谈神经网络大概的发展史:
- 神经网络的提出是为了解决什么问题?
- 为什么神经网络会复兴?
- 为什么神经网络会跌下谷底?
概览起落
四个字概括神经网络的坎坷成长便是"三起两落",网上有张段子图很形象的表示出神经网络的发展趋势,以及部分同志对AI的持有态度.
第一次复兴:诞生
笔者认为神经网络的前身就是感知机,感知机的诞生才算是神经网络的1.0版本.一些资料上认为1943年的A Logical Calculus if Ideas Immanent in Nervous Activity提出了神经元计算模型,这才是神经网络最开始的起点.我认为这个观点没有错,笔者也没有错,如果把神经网络再细化一点,其本质也不过是加减乘除这些最基本的操作.所以这个问题就不用再进行陈述.
1958年提出感知机《The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain》的大牛叫做Rosenblatt,感知机的过人之处在于仿生物学,可以完成一些简单的视觉处理任务.此外这个大牛在理论上证明了单层神经网络在处理线性可分的模式识别问题时的收敛性,说明单层感知机具有一定程度的学习能力.这一发现在当时可是了不起的啊,于是神经网络的第一次升起便是在他诞