最小生成树 学习笔记

一些概念

树:无圈无环无向图

生成树:走过所有点的树

最小生成树:在树的边有权的时候,走过的边加权和最小的生成树

 

最小生成树的两个算法

第一个 Kruskal

基于贪心策略,不能处理含有负权的树,又被称作加边法。

基本操作是将边权从小到大排列,将每个结点看作独立的树,每次将两颗树合并。

 

第二个Prim

又称加点法,每次选择代价最小的点加入,逐渐扩张到整个图。

 

HDU1233(畅通工程) 并查集 Kruskal

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 1e4 + 5;
int father[maxn];
int sum;
struct node{
    int u, v, w;
}edge[maxn];
void init() {
    for(int i = 0; i < maxn; i++) {
        father[i] = i;
    }
}
int find(int x) {
    return father[x] == x ? x : find(father[x]);
}
void unionn(int x,int y,int n) {
    int p1 = find(x);
    int p2 = find(y);
    if(p1==p2) return;
    father[p1] = p2;
    sum += edge[n].w;
}
bool cmp(node a, node b) {
    return a.w < b.w;
}

int main() {
    int N;
    while(~scanf("%d",&N) ) {
        if(N == 0) return 0;
        else {
            sum = 0;
            int M = N * (N - 1) / 2;
            for (int i = 0; i < M; i++) {
                scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
            }
            init();
            sort(edge, edge + M, cmp);
            for (int i = 0; i < M; i++) {
                unionn(edge[i].u, edge[i].v, i);
            }
           printf("%d\n",sum);
        }
    }
    return 0;
}

 

POJ2485 Highways 求最小生成树中最长边

http://poj.org/problem?id=2485

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 500 + 5;
int father[maxn];
int sum;
struct node{
    int u, v, w;
}edge[maxn * maxn];
void init() {
    for(int i = 0; i < maxn; i++) {
        father[i] = i;
    }
}
int find(int x) {
    return father[x] == x ? x : find(father[x]);
}
bool cmp(node a, node b) {
    return a.w < b.w;
}
int main() {
    int N;
    int T;
    while(~scanf("%d",&T)) {
        while(T--) {
            cin >> N;
            init();
            int x;
            int tot=0;
            for(int i = 0 ; i < N; i++) {
                for(int j = 0; j < N; j++) {
                    scanf("%d",&x);
                    edge[tot].u = i;
                    edge[tot].v = j;
                    edge[tot].w = x;
                    tot++;
                }
            }
            sum = 0;
            int ans;
            sort(edge,edge + tot,cmp);
            for(int i = 0; i < tot; i++) {
                int p1 = find(edge[i].u);
                int p2 = find(edge[i].v);
                if(p1 != p2) {
                    father[p1] = p2;
                    sum++;
                }
                if(sum == N - 1) {
                    ans = edge[i].w;
                    break;
                }
            }
            printf("%d\n",ans);
        }
    }

    return 0;
}

 

POJ1258

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxn = 100 + 5;
int father[maxn];
int sum;
struct node{
    int u, v, w;
}edge[maxn * maxn];
void init() {
    for(int i = 0; i < maxn; i++) {
        father[i] = i;
    }
}
int find(int x) {
    return father[x] == x ? x : find(father[x]);
}
bool cmp(node a, node b) {
    return a.w < b.w;
}
int main() {
    int N;
    while(~scanf("%d",&N)) {

            init();
            int x;
            int tot=0;
            for(int i = 0 ; i < N; i++) {
                for(int j = 0; j < N; j++) {
                    scanf("%d",&x);
                    edge[tot].u = i;
                    edge[tot].v = j;
                    edge[tot].w = x;
                    tot++;
                }
            }
            sum = 0;
            int ans;
            sort(edge,edge + tot,cmp);
            for(int i = 0; i < tot; i++) {
                int p1 = find(edge[i].u);
                int p2 = find(edge[i].v);
                if(p1 != p2) {
                    father[p1] = p2;
                    sum+=edge[i].w;
                }

            }
            printf("%d\n",sum);

    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值