[论文精读]DynBrainGNN: Towards Spatio-Temporal Interpretable Graph Neural Network Based on Dynamic Brain

论文全名:DynBrainGNN: Towards Spatio-Temporal Interpretable Graph Neural Network Based on Dynamic Brain Connectome for Psychiatric Diagnosis

论文网址:DynBrainGNN: Towards Spatio-Temporal Interpretable Graph Neural Network Based on Dynamic Brain Connectome for Psychiatric Diagnosis | SpringerLink

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Proposed Model

2.3.1. Problem Definition

2.3.2. Overall Framework of DynBrainGNN

2.3.3. Construction of Dynamic Functional Graph

2.3.4. Graph Encoder

2.3.5. Spatio-Temporal Attention-Based READOUT Module

2.3.6. Dynamic Variational Autoencoders (DVAE)

2.4. Experiments

2.4.1. Dataset

2.4.2. Baselines

2.4.3. Experimental Settings

2.4.4. Evaluation on Classification Performance

2.5. Interpretation Analysis

2.5.1. Disease-Specific Brain Dynamic Network Connections

2.5.2. Temporal Properties

2.5.3. Conclusion

3. 知识补充

3.1. Dwell time

4. Reference List


1. 省流版

1.1. 心得

(1)完了写完了才发现没有心得,那我咋总结啊?

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①Again, FC can not present the dynamic character of fMRI

elucidate  v.阐明;说明;解释

2.2. Introduction

        ①⭐They challenge that the exist dynamic models lack interpretability in dwell time, fractional windows and number of transitions(意思你能解决?)

        ②They propose a Dynamic Brain Graph Neural Networks (DynBrainGNN), which based on dynamic brain connectom via dynamic variational autoencoders (DVAE) and spatio-temporal attention

        ③It is the first time that someone put forward such a "build in" dynamic FC?(啥玩意?真真第一次?)

2.3. Proposed Model

2.3.1. Problem Definition

        ①Graph set: \left\{\mathcal{G}_{dyn}^{1},\mathcal{G}_{dyn}^{2},...,\mathcal{G}_{dyn}^{N}\right\}, where \mathcal{G}_{dyn}^{i}=\left\{\mathcal{G}^{i}\left(1\right),...,\mathcal{G}^{i}\left(T\right)\right\} is the time series with T length of the i-th subject and N is the number of subjects

        ②Through graphs, they extract and learn features \left\{h_{\mathcal{G}_{dyn}}^1,h_{\mathcal{G}_{dyn}}^2,...,h_{\mathcal{G}_{dyn}}^N\right\}

        ③The real label set: \{Y_{1},Y_{2},...,Y_{N}\}

2.3.2. Overall Framework of DynBrainGNN

        ①The schematic of DynBrainGNN:

which covers graph encoder, spatial attention module, temporal attention module and DVAE four modules;

where decoder recovers \hat{h}_{G(t)}=\mathcal{X}_{d}\circ\mathcal{X}_{e}\left(h_{G(t)}\right) and \check{h}_{G(t+1)}={\mathcal X}_{d}\circ\theta\circ{\mathcal X}_{e}\left(h_{G(t)}\right);

然后,作者只是说橙色蓝色那俩框框是“为了保证解码器的可靠”,然后也没多说了

2.3.3. Construction of Dynamic Functional Graph

        ①Length of time series: T

        ②Length of slicing window: L

        ③Stride: S

        ④By dynamic cutting, they obtain W=[T-L/S] windowed dFC matrices(为啥?如果T=10,L=8,S=1,W不就等于2了吗,但是看上去是不是有1-8,2-9,3-10三个啊,不会要加一吗?

        ⑤Each dFC calculated by Pearson correlation

        ⑥⭐They get the graph \mathcal{G}\left(t\right)=\left(A\left(t\right),X\left(t\right)\right) where A\left ( t \right ) is a adjacency matrix that all 1 transformed by the top 20% absolute correlation and X_{i}\left(t\right)=\left[\rho_{i1},\ldots,\rho_{in}\right]^{\mathrm{T}} denotes the node features which constructed by the row or column of FC matrix

2.3.4. Graph Encoder

        ①Graph encoder: GCN

        ②Propagation rule of GCN:

H^l=\sigma\left(D^{-\frac{1}{2}}\hat{A}D^{-\frac{1}{2}}\Theta^{l-1}\right)

where \hat{A}=A+I,D=\sum_{j}\hat{A}_{ij}\Theta^{l-1} denotes learnable parameters and \sigma \left ( \cdot \right ) denotes Sigmoid

2.3.5. Spatio-Temporal Attention-Based READOUT Module

        ①They designed two attention based READOUT methods, Spatial Attention READOUT (SAR) and Temporal Attention READOUT (TAR)

        ②Based on prior H, they define {\mathcal Z}={\mathcal S}(H), {\mathcal Z}\in\left[0,1\right]^{N},H\in \mathbb{R}^{D\times N}

        ③In SAR, H_{\mathrm{space}}=[x_{i};x_{j}], where [\cdot ;\cdot ] denotes concatenation

        ④In TAR, H_{\mathrm{temporal}} is constructed by the concatenation of several graph presentations at different times

        ⑤The specific operation of {\mathcal S}:

{\mathcal Z}=\mathrm{Gumbel}\_\mathrm{Softmax}\left(\mathrm{Sigmoid}\left(\mathrm{MLP}\left(H\right)\right)\right)

after Sigmoid, {\mathcal Z}\in[0,1]. "Then, attention masks are sampled from Bernoulli distributions, and the gumbelsoftmax reparameterization trick is applied to update {\mathcal S}"

        ⑥In SAR, h_{G}=\mathrm{GCN}\left(\mathcal{Z}_{\mathrm{space}}\odot G\right)

        ⑦In TAR, h_{GT}=\mathcal{Z}_{\mathrm{time}}\otimes G where \otimes denotes Kronecker product

        ⑧Schematic of SAR and TAR:

2.3.6. Dynamic Variational Autoencoders (DVAE)

        ①Temporal transition: h_{G(t+1)}=\mathrm{LSTM}\left(h_{G(t)}\right)

        ②The function of DVAE:

\begin{aligned} \mathcal{L}_{\mathrm{DVAE}}& =\alpha\left(\sum_{t=1}^{T}\mathbb{E}\left[\left\|h_{G(t)}-\hat{h}_{G(t)}\right\|_{F}\right]+\sum_{t=1}^{T-1}\mathbb{E}\left[\left\|h_{G(t+1)}-\check{h}_{G(t+1)}\right\|_{F}\right]\right) \\ &-\beta\left(\sum_{t=1}^{T}\mathbb{E}\left[D_{\mathrm{KL}}\left[q\left(Z|h_{G(t)}\right)\parallel p\left(Z\right)\right]\right]\right), \end{aligned}

where \hat{h}_{G(t)}={\mathcal X}_{d}\circ{\mathcal X}_{e}\left(h_{G(t)}\right),\check{h}_{G(t+1)}={\mathcal X}_{d}\circ\theta\circ{\mathcal X}_{e}\left(h_{G(t)}\right)q\left(Z|h_{G}\right) represents the encoder model(什么东西啊?就是GCN吗?), \left\|\cdot\right\|_{F} indicates the Frobenius norm, p\left(Z\right) denotes the prior distribution with isotropic Gaussian (assumed), \alpha and \beta are both  scaling coefficients of the regularization term

        ③One more regularization term for compacting:

\mathcal{L}_{\mathbf{MI}}=\gamma\left(\sum_{t=1}^{T-1}I\left(h_{G(t+1)},h_{GT(t+1)}\right)\right)

where I\left ( \cdot \right ) denotes the matrix-based Renyi’s \alpha-order mutual information and \gamma denotes the scaling coefficient

        ④Accordingly, combining them all \mathcal{L}=\mathcal{L}_{\mathrm{CE}}+\mathcal{L}_{\mathrm{DVAE}}+\mathcal{L}_{\mathrm{MI}} to get a final loss function, where \mathcal{L}_{\mathrm{CE}} is cross entropy loss

2.4. Experiments

2.4.1. Dataset

        ①ABIDE I: 289 ASD and 23 HC for no reason

        ②REST-meta-MDD: 397 MDD and 427 HC

        ③SRPBS: " This is a multi-disorder MRI dataset"(吓我一跳,总感觉是同时身患玉玉症多动症焦虑症自闭症老年痴呆的被试呢), selecting 234 SCZ and 92 HC

2.4.2. Baselines

        ①Settings:

2.4.3. Experimental Settings

        ①Cross validation: 5 fold

        ②Decision of hyper-parameter: grid search

2.4.4. Evaluation on Classification Performance

        ①Comparison table:

2.5. Interpretation Analysis

2.5.1. Disease-Specific Brain Dynamic Network Connections

        ①The interpretations of dynamically dominant and fluctuant connections()are brought by \mathcal{Z}_{\mathrm{time}} and \mathcal{Z}_{\mathrm{space}}

        ②They define dominant subgraph \mathcal{G}_{\mathrm{dsub}} and fluctuant subgraph \mathcal{G}_{\mathrm{fsub}}:

\mathcal{G}_{\mathrm{dsub}}=\frac{1}{T}\sum\limits_{t=1}^{T}\left(\mathcal{Z}\left(t\right)\right),\mathcal{G}_{\mathrm{fsub}}=\sqrt{\frac{1}{T}\sum\limits_{t=1}^{T}\left(\mathcal{Z}\left(t\right)-\bar{\mathcal{Z}}\right)^{2}}

where \mathcal{Z}\left(t\right)=\mathcal{Z}_{\mathrm{space}}\left(t\right)\odot\mathcal{Z}_{\mathrm{time}}\left(t\right) and \overline{\mathcal{Z}} is the mean value of \mathcal{Z}\left(t\right)

        ③The top 50 influential edges:

sensorimotor  adj. 感觉运动的(等于 sensomotor)

2.5.2. Temporal Properties

        ①“我们提供的时间属性的解释,以了解大脑的灵活性和适应性在精神疾病。具体而言,我们首先应用k-means聚类算法对有窗时空参与的图表示hGT进行聚类,以评估动态大脑模式(状态)。使用基于轮廓分数的聚类有效性分析来确定最佳聚类数量。然后,我们量化这些状态的时间属性的组差异,包括停留时间(即属于一个状态的连续窗口的持续时间),分数窗口(即属于一个状态的总窗口的比例)和转换数量(即状态之间的转换数量)。使用带有错误发现率(FDR)校正的双样本t检验(图4)。我们的分析显示,ASD患者在II状态下有更高的分数窗口和平均停留时间,这与最近的一项神经影像学研究一致”(我失去了paraphrase能力)

        ②Temporal properties:

2.5.3. Conclusion

        They want to further try their model in other datasets

3. 知识补充

3.1. Dwell time

搜了一圈没搜到关于医学设备的,提供以下猜测

(1)最可能的,length of time series signals

(2)两个相邻点之间的时间?比如task fMRI两次task之间的时间间隔

(3)嘻嘻,事实证明上面俩都是错的,在2.5.2.作者说它是"the duration of consecutive windows belonging to one state"

4. Reference List

Zheng, K., Ma, B. & Chen, B. (2024) 'DynBrainGNN: Towards Spatio-Temporal Interpretable Graph Neural Network Based on Dynamic Brain Connectome for Psychiatric Diagnosis', Machine Learning in Medical Imaging, 14349.doi: DynBrainGNN: Towards Spatio-Temporal Interpretable Graph Neural Network Based on Dynamic Brain Connectome for Psychiatric Diagnosis | SpringerLink

  • 20
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值