论文网址:Line Graph Neural Networks for Link Prediction | IEEE Journals & Magazine | IEEE Xplore
英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用
目录
2.4.3. Line Graph Neural Networks
2.5.1. Datatsets and Baseline Models
1. 省流版
1.1. 心得
(1)这么大篇幅夸SEAL然后还不在摘要和intro里说自己的模型名差点让我觉得你们提出来的就是SEAL了-,-
(2)这里总是会强调封闭的子图,就是"enclosing subgraph"
1.2. 论文总结图
2. 论文逐段精读
2.1. Abstract
①⭐Link (edge) prediction in the original graph equals to the node classification in the line graph
2.2. Introduction
①⭐Heuristic methods for link prediction always limit, such as methods in social network do not match tasks in molecule
②⭐Link prediction can be converted to graph classification when regards enclosing subgraph as a graph
metabolic adj. 变化的;[生理]新陈代谢的
2.3. Related Work
①Categories of link prediction methods: heuristic methods, embedding methods, deep learning methods
②Heuristic methods: first-order, secondorder, and high-order methods
③Embedding methods: matrix factorization and stochastic block
④Deep learning methods: SEAL
2.4. The Proposed Methods
2.4.1. Problem Formulation
①For a graph ,
is the node set,
is the edge set, and adjacency matrix
2.4.2. Overall Framework
①The original graph for link prediction in social networks (this method mainly focus on 1-hop neighbors and extracting subgraphs) (1-hop can be extended to h-hop).
extracted subgraph:
The common connections determine the relations between A and B
②Steps of link prediction: enclosing subgraph extraction, node labeling, feature learning and link prediction
③Overall framework:
where the double circles are the centered nodes, and the pure yellow circle inthe forth graph is the aimed link
2.4.3. Line Graph Neural Networks
(1)Line graph space transformation
①⭐我觉得它和传统线图不一样,传统的是无向→有向,但是它还是无向→无向。作者定义的是当原图中的两个边有共享顶点时,两条边在线图中变成俩顶点并存在一条连接
②Example:
③⭐The number of edges in L(G) is , where
denotes the degree of node
in original graph,
is the edge number in the original graph
(2)Node label transformation
①Node label generation:
where the denotes the node labeling function,
and
represent the end nodes of edge. In undirected graph, edge (
) equals to edge (
)
②作者意思是①确实适用于无向图因为无论和
顺序和编号咋样得到的
都一样。但是如果加进去俩节点属性就会有顺序上的问题,所以节点属性还是应该取和:
where and
are the node attributes of
and
. And this
will be the node attribute of this edge in the line graph
(3)Feature Learning by Graph Neural Networks
①Updating of GNN:
where is all the neighbors of node
,
is a weight matrix and
denotes the normalization coefficient.
②Cross entropy loss:
where is the links which need to be predicted,
is the probability that the link
exists,
represents if the link exists
(4)Connection With Learning on Original Graphs
①Edge feature:
where denotes GNN
②They rewrite the updating function:
⭐作者意思就是因为线图中的节点(原图的边)包含了原图中边连接的两个顶点,然后线图中节点聚合的一阶会聚合周围的节点,但是周围的节点也源于原图中其他的两个顶点,相当于是线图中一跳等于原图两跳结合。不过这个还是要取决于怎么定义线图节点特征
2.4.4. The Proposed Algorithm
(1)Enclosing Subgraph Extraction
①Constructing 2-hop enclosing subgraph:
(2)Node Labeling
①Identifying 2 target nodes first
②Providing the importance of each node to target nodes
③Node labeling function:
where
④Lable of target nodes: and
⑤Lable of unreachable nodes: for or
, there is
2.5. Experiments
2.5.1. Datatsets and Baseline Models
①Dataset:
2.5.2. Experimental Setup
①Sample selection: 50% for training and 50% for testing
②Introducing parameter settings in other models
③Epoch: 15
2.5.3. Results and Analysis
①Running times: 10, with different split
②AUC comparison table with 80% for training:
③AP comparison table with 80% for training:
④AUC comparison table with 50% for training:
⑤AP comparison table with 50% for training:
⑥Loss table:
⑦AUC comparison under different data spliting ratio:
⑧t_SNE on different dataset:
2.6. Conclusion
Line graph might overcome the disadvantage of graph pooling
4. Reference
Cai, L., Li, J., Wang, J., & Ji, S. (2021) 'Line Graph Neural Networks for Link Prediction', IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9). doi: 10.1109/TPAMI.2021.3080635