学习笔记15-ENet

ENet是一种针对实时语义分割的深度神经网络,旨在解决移动设备上的计算资源限制。网络采用瓶颈模块,分为非下采样和下采样两种类型,结合了ResNets的思想。整体架构包括初始阶段、编码器阶段和解码器阶段,通过特征图分辨率保持、早期下采样、非线性操作优化和分解卷积、空洞卷积等设计技巧提高性能。
摘要由CSDN通过智能技术生成

ENet:A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

提出问题:深度神经网络在移动应用上进行实时像素级语义分割存在困难,需要大量的浮点运算,而且有很长的运行时间,这阻碍了其可用性。虽然CNN在图像分类等应用取得了巨大的成功,但CNN应用于图像像素级标注时只能提供粗糙的空间结果。然而,现有提出的用于分割的神经网络,如SegNet、FCN都使用的VGG16,但这些网络需要大量的参数和很长的推断时间,这对许多移动设备或者电池设备来说是不能实现的。

一、网络架构

1、瓶颈模块ENet bottleneck module

采用了ResNets的观点,该模块具有单个主分支和与之分离的卷积滤波器的扩展,然后进行逐个元素加法合并,如图2b所示。

bottleneck模块主要有非下采样和下采样两种情况:

1)非下采样bottleneck:

每一个block辅线包括3个卷积层:一个1x1投影用来减少维度;一个主要卷积层(即conv,可能是普通卷积,不对称分解卷积或者膨胀空洞卷积);一个1x1扩展层用于升维。在全部卷积之间置有批处理标准化Batch Norm和PReLU。

主分支直接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值