利用enet学习caffe系列----(5)修改网络结构

本文深入解析了ENet网络结构,一种用于实时语义分割的深度神经网络。文章详细介绍了输入输出数据变化、label数据调整及各层参数配置,如initial_block、bottleneck等,为读者提供了一个全面理解ENet架构的视角。
摘要由CSDN通过智能技术生成

enet网络结构参考博客:emantic Segmentation–ENet:A Deep Neural Network Architecture for Real-Time Semantic…论文解读
经过上述分析,我们已经把enet的网络结构已经分析清楚,当我们需要修改其中的shape或者channel时,可以参照输入输出数据变化进行修改。

输入输出数据变化

数据输入层

输入数据输出数据
(C_in, W_in, H_in)(C_in, new_width, new_height)

label数据变化

label_divide_factor类型输入labelreshape后label
8encoder(512, 1024)(64, 128)
1decoder(512, 1024)(512, 1024)

initial_block

附加参数输入数据输出数据
num_output=13(C_in, W_in, H_in)(13+C_in, W_in/2, H_in/2)

bottleneck

bottleneck附带参数输入数据输出数据作用
downsamplingnum_output(C_in, W_in, H_in)(C_in, W_in/2, H_in/2)降维,形状变化
regularnum_output = C_in(C_in, W_in, H_in)(C_in, W_in, H_in)归一化
dilatednum_output = C_in param_add=2,4,8,16(C_in, W_in, H_in)(C_in, W_in, H_in)空洞卷积
asymmetricnum_output = C_in param_add=5(C_in, W_in, H_in)(C_in, W_in, H_in)
upsamplingnum_out(C_in, W_in, H_in)(num_out, 2W_in, 2H_in)升维,形状变化

fullconv层

模式输入数据输出数据
train_encoder(C_in, W_in, H_in)(C_in, W_in, H_in)
其他(C_in, W_in, H_in)(C_in, 2W_in, 2H_in)

分析网络结构

利用上表对下面结构进行分析,改动
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值