enet网络结构参考博客:emantic Segmentation–ENet:A Deep Neural Network Architecture for Real-Time Semantic…论文解读
经过上述分析,我们已经把enet的网络结构已经分析清楚,当我们需要修改其中的shape或者channel时,可以参照输入输出数据变化进行修改。
输入输出数据变化
数据输入层
输入数据 | 输出数据 |
---|---|
(C_in, W_in, H_in) | (C_in, new_width, new_height) |
label数据变化
label_divide_factor | 类型 | 输入label | reshape后label |
---|---|---|---|
8 | encoder | (512, 1024) | (64, 128) |
1 | decoder | (512, 1024) | (512, 1024) |
initial_block
附加参数 | 输入数据 | 输出数据 |
---|---|---|
num_output=13 | (C_in, W_in, H_in) | (13+C_in, W_in/2, H_in/2) |
bottleneck
bottleneck | 附带参数 | 输入数据 | 输出数据 | 作用 |
---|---|---|---|---|
downsampling | num_output | (C_in, W_in, H_in) | (C_in, W_in/2, H_in/2) | 降维,形状变化 |
regular | num_output = C_in | (C_in, W_in, H_in) | (C_in, W_in, H_in) | 归一化 |
dilated | num_output = C_in param_add=2,4,8,16 | (C_in, W_in, H_in) | (C_in, W_in, H_in) | 空洞卷积 |
asymmetric | num_output = C_in param_add=5 | (C_in, W_in, H_in) | (C_in, W_in, H_in) | |
upsampling | num_out | (C_in, W_in, H_in) | (num_out, 2W_in, 2H_in) | 升维,形状变化 |
fullconv层
模式 | 输入数据 | 输出数据 |
---|---|---|
train_encoder | (C_in, W_in, H_in) | (C_in, W_in, H_in) |
其他 | (C_in, W_in, H_in) | (C_in, 2W_in, 2H_in) |
分析网络结构
利用上表对下面结构进行分析,改动