说说多重背包的循环次序

鉴于多次被体积和次数的循环里外顺序坑,就决定今天跟你好好掰吃掰吃!!!!
1.首先,想说的是,普通的多重背包写法,是相当于每取1次物品就更新一遍体积的值,这就像是01背包一样
要保证当次循环是没更新过的值,所以体积不仅要倒过来,还得要体积在外面,因为
HUA重点!!!!当前层的物品只能用上一层的物品去更新!!!就是这件物品,只能由上一个物品转移过来,
而不是同种物品的不同取法,因为同种物品,只能有一种取法,你总不能拿2次又拿3次吧!!
2.其次,二进制的写法,不多说怎么写了,简单说说为什么这么写。

   for (int k = 1; k <= s; k <<= 1){
        ve.push_back(k);
        s -= k;
    }

每次取2的几次幂个,有的小伙伴不明白为什么要s -= k,比如说我,我刚拿过来这个循环第一想法是
我草!!这尼玛,为什么这s这么牛逼,还能减!!现在回过头来再写这个的时候,只能想当时还是挺脑残的
因为你既然拿了这么多次了,当然就要给人家减下去那么多啊,总不能拿了人家100块钱,人家账户余额
还原封不动吧!还要注意的是跟完全背包不一样的是,体积仍然是倒着的,因为这个看成很多个01背包!不能无限拿!
这个思想就是拆分,因为每种取法,都能有以上几种取法凑出来,所以说当前层的物品需要同种物品的值,
这就相当于你能拿很多次同种物品,仔细体会以上两种写法的区别哦!
3.单调队列,这种写法没什么好说的,因为枚举形式和普通的一样,不是拼凑,所以说不说了!
就酱紫,说实话,俩月之后回来在复习背包问题,发现不像原来想的那么复杂,更不像原来想的那么玄学
每层循环都是有原因的,这就相当于模拟你的决策过程,你想怎么写就怎么写,但要遵守游戏规则。
希望下次回来,我还能犯这些错误!!!!!哈哈哈,加油!!!再次勉励自己一下!!!
也希望不管闲着无聊还是电脑卡顿错点进来看到我写的这些废话,能给更多人带来启发,我想我没有白白反思!
希望全世界的编程爱好者都go go go!
有一道混合背包的题:
https://www.acwing.com/problem/content/7/

#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e3 + 7;
int dp[maxn], v, w, s, m;
int main(){
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i++){
        cin >> v >> w >> s;
        if(s == -1){
            for (int j = m; j >= v; j--)
               dp[j] = max(dp[j], dp[j - v] + w);
        }
        else if(s == 0){
            for (int j = v; j <= m; j++)
               dp[j] = max(dp[j], dp[j - v] + w);
        }
        else{
            vector<int>ve;
            for (int k = 1; k <= s; k <<= 1){
                ve.push_back(k);
                s -= k;
            }
            if(s)ve.push_back(s);
            for (auto t : ve){
                for (int j = m; j >= 0; j--)//这两个循环不能倒过来!
                    if(t*v <= j)dp[j] = max(dp[j], dp[j - t*v] + t*w);
            }
        }
    }
    printf("%d\n",dp[m]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值