Ollama 环境搭建与使用指南

本文介绍了Ollama,一个本地部署的语言模型工具,指导用户如何在CPU和GPU环境中搭建,提供运行指令以及模型存储路径。通过Docker容器管理和默认模型名,简化了人工智能模型的探索过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是 Ollama?

Ollama 通过在本地部署和运行大型语言模型,为用户提供了一个方便、灵活的工具来探索人工智能的强大能力。

环境搭建

CPU 环境

如果你的机器没有 GPU,可以使用以下命令在 CPU 环境下运行 Ollama:

docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollamag

GPU 环境

如果你的机器有 NVIDIA GPU,可以使用以下命令在 GPU 环境下运行 Ollama:

docker run -d --gpus=all -v /data/ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama

注意将 /data/ollama 替换为你希望存储 Ollama 数据的路径。

运行 Ollama

启动 Docker 容器后,可以使用以下命令运行 Ollama:

docker exec -it ollama ollama run qwen:7b

这里的 qwen:7b 是默认的模型名称。如果你想使用其他模型,只需将其替换为相应的模型名称即可。Ollama 会自动下载所需的模型文件。

模型存储路径

Ollama 的模型文件默认存储在以下路径:

/home/docker/volumes/ollama/_data/models

你可以在这个路径下找到已下载的模型文件。

总结

群内交流更多技术
130856474  <--  在这里

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值