Ollama 是一个开源平台,用于部署和运行大型语言模型。它提供了一种在本地环境中运行语言模型的能力,使得用户可以在本地安全地与这些模型进行交互,而无需将数据发送到云端。
安装 Ollama
确保您已经安装了 Ollama。如果还没有安装,可以通过以下命令安装:
代码语言:javascript
# Linux, macOS
curl -s https://install.ollama.ai | sh
# Windows (PowerShell)
Invoke-WebRequest -Uri https://install.ollama.ai -OutFile ollama-install.ps1
.\ollama-install.ps1
启动服务
使用 ollama serve
命令启动服务。
Linux/macOS:
代码语言:javascript
ollama serve
Windows (PowerShell):
代码语言:javascript
ollama serve
配置 Ollama 以允许外部访问
默认情况下,Ollama 绑定的是 127.0.0.1:11434
,这意味着它仅监听本地回环地址。要让 Ollama 在局域网内被其他设备访问,您需要配置 OLLAMA_HOST
环境变量以监听所有网络接口。
Linux/macOS:
代码语言:javascript
export OLLAMA_HOST=0.0.0.0:11434
ollama serve
Windows (PowerShell):
代码语言:javascript
$env:OLLAMA_HOST = "0.0.0.0:11434"
ollama serve
使用 Systemd 管理服务 (仅限 Linux)
如果您使用的是 Linux 系统,并且希望使用 Systemd 来管理 Ollama 服务,可以按照以下步骤操作:
创建服务文件 创建一个新的 Systemd 服务文件,例如 /etc/systemd/system/ollama.service
,并添加以下内容:
代码语言:javascript
[Unit]
Description=Ollama AI Service
After=network.target
[Service]
Type=simple
User=<your-username>
WorkingDirectory=/path/to/ollama
ExecStart=/usr/bin/ollama serve
Restart=on-failure
Environment="OLLAMA_HOST=0.0.0.0:11434"
[Install]
WantedBy=multi-user.target
启用服务 通过以下命令启用并启动服务:
代码语言:javascript
sudo systemctl enable ollama.service
sudo systemctl start ollama.service
停止服务 如果需要停止服务,可以使用以下命令:
代码语言:javascript
sudo systemctl stop ollama.service
使用 ollama run
启动模型
使用 ollama run
命令启动单个模型实例。例如,要启动名为 gemma
的模型,可以使用以下命令:
代码语言:javascript
ollama run gemma
如果您还没有下载该模型,Ollama 会自动为您下载它。您可以通过 ollama list
命令查看所有可用的模型列表。
查看正在运行的模型
使用 ollama ps
命令查看正在运行的模型:
代码语言:javascript
ollama ps
验证服务状态
由于 ollama status
命令不存在,您可以使用以下方法之一来检查服务的状态:
使用 ps
命令
Linux/macOS:
代码语言:javascript
ps aux | grep ollama
Windows (PowerShell):
代码语言:javascript
Get-Process ollama
使用 Docker 命令
查看运行中的 Docker 容器:
代码语言:javascript
docker ps
使用 systemctl
命令 (仅限 Linux)
如果您使用 Systemd 来管理服务,可以使用以下命令来查看服务的状态:
代码语言:javascript
sudo systemctl status ollama.service
结论
通过以上步骤,您可以在 Linux、Windows 和 macOS 系统上成功地配置 Ollama 服务,使其能够在您的局域网内被其他设备访问。这不仅增加了 Ollama 的可用性,还为您提供了更多的灵活性来利用其强大的语言处理功能。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓