Ollama 使用指南:Linux、Windows 和 macOS

Ollama 是一个开源平台,用于部署和运行大型语言模型。它提供了一种在本地环境中运行语言模型的能力,使得用户可以在本地安全地与这些模型进行交互,而无需将数据发送到云端。

安装 Ollama

确保您已经安装了 Ollama。如果还没有安装,可以通过以下命令安装:

代码语言:javascript

# Linux, macOS
curl -s https://install.ollama.ai | sh

# Windows (PowerShell)
Invoke-WebRequest -Uri https://install.ollama.ai -OutFile ollama-install.ps1
.\ollama-install.ps1
启动服务

使用 ollama serve 命令启动服务。

Linux/macOS:

代码语言:javascript

ollama serve

Windows (PowerShell):

代码语言:javascript

ollama serve
配置 Ollama 以允许外部访问

默认情况下,Ollama 绑定的是 127.0.0.1:11434,这意味着它仅监听本地回环地址。要让 Ollama 在局域网内被其他设备访问,您需要配置 OLLAMA_HOST 环境变量以监听所有网络接口。

Linux/macOS:

代码语言:javascript

export OLLAMA_HOST=0.0.0.0:11434
ollama serve

Windows (PowerShell):

代码语言:javascript

$env:OLLAMA_HOST = "0.0.0.0:11434"
ollama serve
使用 Systemd 管理服务 (仅限 Linux)

如果您使用的是 Linux 系统,并且希望使用 Systemd 来管理 Ollama 服务,可以按照以下步骤操作:

创建服务文件 创建一个新的 Systemd 服务文件,例如 /etc/systemd/system/ollama.service,并添加以下内容:

代码语言:javascript

[Unit]
Description=Ollama AI Service
After=network.target

[Service]
Type=simple
User=<your-username>
WorkingDirectory=/path/to/ollama
ExecStart=/usr/bin/ollama serve
Restart=on-failure
Environment="OLLAMA_HOST=0.0.0.0:11434"

[Install]
WantedBy=multi-user.target

启用服务 通过以下命令启用并启动服务:

代码语言:javascript

sudo systemctl enable ollama.service
sudo systemctl start ollama.service

停止服务 如果需要停止服务,可以使用以下命令:

代码语言:javascript

sudo systemctl stop ollama.service
使用 ollama run 启动模型

使用 ollama run 命令启动单个模型实例。例如,要启动名为 gemma 的模型,可以使用以下命令:

代码语言:javascript

ollama run gemma

如果您还没有下载该模型,Ollama 会自动为您下载它。您可以通过 ollama list 命令查看所有可用的模型列表。

查看正在运行的模型

使用 ollama ps 命令查看正在运行的模型:

代码语言:javascript

ollama ps
验证服务状态

由于 ollama status 命令不存在,您可以使用以下方法之一来检查服务的状态:

使用 ps 命令

Linux/macOS:

代码语言:javascript

ps aux | grep ollama

Windows (PowerShell):

代码语言:javascript

Get-Process ollama

使用 Docker 命令

查看运行中的 Docker 容器:

代码语言:javascript

docker ps

使用 systemctl 命令 (仅限 Linux)

如果您使用 Systemd 来管理服务,可以使用以下命令来查看服务的状态:

代码语言:javascript

sudo systemctl status ollama.service
结论

通过以上步骤,您可以在 Linux、Windows 和 macOS 系统上成功地配置 Ollama 服务,使其能够在您的局域网内被其他设备访问。这不仅增加了 Ollama 的可用性,还为您提供了更多的灵活性来利用其强大的语言处理功能。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### Ollama 使用教程:初学者入门指南 对于希望了解并使用 Ollama 的新手来说,掌握这一框架不仅涉及具体的技术操作,还包括理解其背后的核心概念。为了使初次接触者能够顺利上手,在此提供一份详细的入门指导。 #### 安装与配置 在开始之前,确保拥有合适的开发环境至关重要。这包括但不限于 Python 版本的选择以及相关依赖库的安装。针对 Ollama 框架本身,则需按照官方文档指示完成必要的软件工具部署,并仔细调整本地开发环境设置以支持后续工作[^1]。 ```bash # 更新 pip 并安装虚拟环境 pip install --upgrade pip python -m venv my_ollama_env source my_ollama_env/bin/activate # LinuxmacOS 下激活虚拟环境 my_ollama_env\Scripts\activate # Windows 下激活虚拟环境 ``` 接着,依据个人需求通过 `pip` 命令来引入特定模块: ```bash pip install llama-index-llms-ollama ``` 上述命令用于安装 Llama Index 中有关于 Ollama 支持的部分,这对于想要利用本地模型进行实验的新用户尤为有用[^3]。 #### 学习资源推荐 除了技术性的准备工作外,理论知识同样不可或缺。建议观看专门面向零基础学员设计的学习资料——无论是纸质书籍还是在线课程形式皆可接受;跟随讲师的步伐逐步深入探索该领域内的知识点,往往能取得事半功倍的效果[^2]。 #### 实践练习 最后但同样重要的是实践环节。尝试构建简单的项目案例或是模仿已有的实例来进行动手实操训练,以此巩固所学内容并将之转化为实际技能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值